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FINITE GROUPS WITH SOME SEMI-p-COVER-AVOIDING

OR ss-QUASINORMAL SUBGROUPS

Qingjun Kong and Xiuyun Guo

Abstract. Suppose that G is a finite group and H is a subgroup of G.
H is said to be an ss-quasinormal subgroup of G if there is a subgroup
B of G such that G = HB and H permutes with every Sylow subgroup
of B; H is said to be semi-p-cover-avoiding in G if there is a chief series
1 = G0 < G1 < · · · < Gt = G of G such that, for every i = 1, 2, . . . , t, if
Gi/Gi−1 is a p-chief factor, then H either covers or avoids Gi/Gi−1. We
give the structure of a finite group G in which some subgroups of G with
prime-power order are either semi-p-cover-avoiding or ss-quasinormal in

G. Some known results are generalized.

1. Introduction

All groups considered in this paper are finite. G always means a group, |G|
denotes the order of G and π(G) denotes the set of all primes dividing |G|.

Let F be a class of groups. We call F a formation, provided that (1) if
G ∈ F and H EG, then G/H ∈ F , and (2) if G/M and G/N are in F , then
G/(M ∩ N) is in F for any normal subgroups M , N of G. A formation F

is said to be saturated if G/Φ(G) ∈ F implies that G ∈ F . In this paper,
U will denote the class of all supersolvable groups. Clearly, U is a saturated
formation.

A famous topic in group theory is to study the influence of some subgroups
with prime-power order on the structure of G. In [6], Li, Shen and Liu gener-
alized s-quasinormal subgroups to ss-quasinormal subgroups. A subgroup H
of G is said to be an ss-quasinormal subgroup of G if there is a subgroup B of
G such that G = HB and H permutes with every Sylow subgroup of B. Re-
cently, Fan, Guo and Shum [1] introduced the semi-p-cover-avoiding property.
A subgroup H of G is said to be semi-p-cover-avoiding in G if there is a chief
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series 1 = G0 < G1 < · · · < Gt = G of G such that H either covers or avoids
Gi/Gi−1 whenever Gi/Gi−1 is a p-chief factor.

Some interesting results have been obtained about the structure of a group
G under assumption that some subgroups of G are ss-quasinormal or semi-p-
cover-avoiding in G (see: [1, 3, 5, 6]).

There are examples to show ss-quasinormal and semi-p-cover-avoiding are
two different properties of subgroups.

Example 1.1. Let G = A5, the alternative group of degree 5. Then A4 is an
ss-quasinormal subgroup of G but not semi-p-cover-avoiding in G.

Example 1.2 ([2, Example 2.4]). Let A4 be the alternative group of degree
4 and C2 = 〈c〉 a cyclic group of order 2, generated by an element c. Let
G = C2 × A4. Then A4 = K4 · 〈t〉, where K4 = 〈a, b〉 is the Klein four-group
with generators a and b of order 2 and 〈t〉 is a cyclic group of order 3. Take
H = 〈ac〉 to be the subgroup of G generated by ac. It is clear that the following
series

1 < K4 < A4 < C2 ×A4 = G

is a chief series of G such that H covers G = A4 and avoids the rest. This
is to say that H has the semi-cover-avoiding property in G. Of course, H is
semi-p-cover-avoiding in G. However, H is not ss-quasinormal in G.

The aim of this article is to unify and improve some earlier results using
ss-quasinormal and semi-p-cover-avoiding subgroups. Our main theorems are
as follows:

Theorem 3.1. Let G be a group and p a prime divisor of |G| with (|G|, p−1) =
1. Let P be a Sylow p-subgroup of G. If all maximal subgroups of P are either

semi-p-cover-avoiding or ss-quasinormal subgroups in G, then G is p-nilpotent.

Theorem 3.6. Let F be a saturated formation containing U . Suppose that

G is a group with a solvable normal subgroup H such that G/H ∈ F . If all

maximal subgroups of all Sylow subgroups of F (H) are either semi-p-cover-
avoiding or ss-quasinormal in G, then G ∈ F .

Theorem 3.7. Let F be a saturated formation containing U . Suppose that

G is a group with a normal subgroup H such that G/H ∈ F . If all maximal

subgroups of all Sylow subgroups of F ∗(H) are either semi-p-cover-avoiding or

ss-quasinormal in G, then G ∈ F .

2. Basic definitions and preliminary results

In this section, we give some results that are needed in this paper.

Lemma 2.1 ([6]). Let H be an ss-quasinormal in a group G, K ≤ G and N
a normal subgroup of G.

(i) If H ≤ K, then H is ss-quasinormal in K;
(ii) HN/N is ss-quasinormal in G/N ;
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(iii) If N ≤ K and K/N is ss-quasinormal in G/N , then K is ss-quasinormal

in G;
(iv) If K is quasinormal in G, then HK is ss-quasinormal in G.

Lemma 2.2 ([1, 3]). Let H be a semi-p-cover-avoiding subgroup of a group G
and N a normal subgroup of G. Then

(i) H is semi-p-cover-avoiding in K for every subgroup K of G with H ≤ K;
(ii) HN/N is semi-p-cover-avoiding in G if one of the following holds:
(1) N ⊆ H ;
(2) gcd(|H |, |N |) = 1, where gcd(·, ·) denotes the greatest common divisor.

Lemma 2.3 ([7]). Let G be a group and p a prime divisor of |G| with (|G|,
p− 1) = 1. Let P be a Sylow p-subgroup of G. If all maximal subgroups of P
are semi-p-cover-avoiding or s-quasinormally embedded subgroups in G, then

G is p-nilpotent.

Lemma 2.4 ([8]). Let G be a group and p a prime dividing |G| with (|G|,
p− 1) = 1.

(i) If N is normal in G of order p, then N ≤ Z(G);
(ii) If G has a cyclic Sylow p-subgroup, then G is p-nilpotent;
(iii) If M ≤ G and [G : M ] = p, then M EG.

Lemma 2.5 ([6]). Let H be a nilpotent subgroup of G. Then the following

statements are equivalent.

(i) H is s-quasinormal in G;
(ii) H ≤ F (G) and H is ss-quasinormal in G;
(iii) H ≤ F (G) and H is s-quasinormally embedded in G.

Lemma 2.6 ([7]). Let F be a saturated formation containing U , G is a group

with a normal subgroup H such that G/H ∈ F . Then G ∈ F if one of the

following holds:
(i) all maximal subgroups of all non-cyclic Sylow subgroups of H are either

semi-p-cover-avoiding or s-quasinormally embedded in G;
(ii) all maximal subgroups of all non-cyclic Sylow subgroups of F ∗(H) are

either semi-p-cover-avoiding or s-quasinormally embedded in G.

Lemma 2.7 ([4, X.13]). Let G be a group and M a subgroup of G.

(i) If M is normal in G, then F ∗(M) ≤ F ∗(G);
(ii) F ∗(G) 6= 1 if G 6= 1; in fact, F ∗(G)/F (G)=Soc(F (G)CG(F (G))/F (G));
(iii) F ∗(F ∗(G)) = F ∗(G) ≥ F (G); if F ∗(G) is solvable, then F ∗(G) = F (G).

3. Main results

Theorem 3.1. Let G be a group and p a prime divisor of |G| with (|G|, p−1) =
1. Let P be a Sylow p-subgroup of G. If all maximal subgroups of P are either

semi-p-cover-avoiding or ss-quasinormal subgroups in G, then G is p-nilpotent.
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Proof. If all maximal subgroups of P are semi-p-cover-avoiding in G, then G
is p-nilpotent by Lemma 2.3. Hence there exists a maximal subgroup P1 of
P such that P1 is ss-quasinormal in G. Firstly, fix an H which is a maximal
subgroup of P such that H is ss-quasinormal in G.

Now we prove that there exists a Hall p′-subgroup K of G such that HK is
a subgroup of index p in G.

By conditions, there is a subgroup B ≤ G such that G = HB and HX =
XH for all X ∈ Syl(B), and H ∩B is of index p in Bp, a Sylow p-subgroup of
B containing H ∩B. Thus S * H and S ∩H = B ∩H for all S ∈ Sylp(B). So

B ∩H =
⋂

b∈B

(Sb ∩H) ≤
⋂

b∈B

Sb = Op(B).

We claim that B has a Hall p′-subgroup. Because |Op(B) : B ∩ H | = p
or 1, it follows that |B/Op(B)|p = p or 1. As (|G|, p − 1)=1, then B/Op(B)
is p-nilpotent by Lemma 2.4, and hence B is p-solvable. So B has a Hall
p′-subgroup. Thus the claim holds. Now, let K be a Hall p′-subgroup of B.
π(K) = {p2, . . . , ps} and Pi ∈ Sylpi

(K). By the conditions,H is ss-quasinormal
in G, so H permute with subgroup 〈P2, . . . , Ps〉 = K and HK ≤ G. Moreover,
[G : HK] = p as desired.

Now, for every Hi which is a maximal subgroup of P (Hi is ss-quasinormal
in G), there exists a Hall p′-subgroup Ki of G such that Mi = HiKi, which is a
subgroup of index p in G. As (|G|, p−1) = 1, by Lemma 2.4,MiEG. Obviously,
Hi is s-quasinormally embedded in G. Thus every maximal subgroup of G is
either semi-p-cover-avoiding or s-quasinormally embedded in G. By Lemma
2.3, G is p-nilpotent. �

Corollary 3.2. Let p be the smallest prime dividing the order of a group G
and P a Sylow p-subgroup of G. If all maximal subgroups of P are semi-p-
cover-avoiding or ss-quasinormal subgroups in G, then G is p-nilpotent.

Corollary 3.3. Suppose that G is a group. If all maximal subgroups of all

Sylow subgroups of G are either semi-p-cover-avoiding or ss-quasinormal in G,

then G has Sylow tower of supersolvable type.

Proof. It is clear that (|G|, p−1) = 1, if p is the smallest prime dividing |G|. By
the hypothesis, all maximal subgroups of all Sylow subgroups of G are either
semi-p-cover-avoiding or ss-quasinormal in G, so G satisfies the condition of
Theorem 3.1, and hence G is p-nilpotent. Let U be the normal p-complement of
G, then U satisfies the condition by induction, hence G possesses Sylow tower
property of supersolvable type. �

Theorem 3.4. Let F be a saturated formation containing U . Suppose that G
is a group with a normal subgroup H such that G/H ∈ F . If for every prime

p dividing |H | and P ∈ Sylp(H), If all maximal subgroups of P are either

semi-p-cover-avoiding or ss-quasinormal in G, then G ∈ F .

Proof. Assume that the theorem is not true and let G be a minimal counter-
example.



FINITE GROUPS 947

(1) H has minimal normal subgroup H1, H1 ≤ Q ≤ H , Q ∈ Sylq(H) and q
is the largest prime in π(H).

Obviously, H satisfies the condition of Corollary 3.3, so H possesses Sylow
tower property of supersolvable type. Let q is the largest prime dividing |H |
and Q is a Sylow q-subgroup of H , then Q E H , so H has minimal normal
subgroup H1, H1 ≤ Q and H1 is an elementary abelian q-group, as desired.

(2) G/H1 ∈ F , H1 
 Φ(G), H1 = Q ∈ Sylq(H).
Obviously, G/H1 ∈ F . Since F is a saturated formation, so H1 is the

unique minimal normal subgroup of G containing in H , H1 
 Φ(G). Moreover,
H1 = F (H). Since H is solvable, so CH(H1) ≤ F (H) and CH(H1) = H1 =
F (H). Since QEH , Q ≤ F (H), thus H1 = Q ∈ Sylq(H).

(3) The final contradiction.
For any maximal subgroup Q1 of Q, Q1 is either semi-p-cover-avoiding or

ss-quasinormal in G by (2) and the hypothesis. Thus Q1 is either semi-p-cover-
avoiding or s-quasinormally embedded in G by Lemma 2.5. Hence G ∈ F by
Lemma 2.6(i). We get the final contradiction. �

Corollary 3.5. Let G be a group, H a normal subgroup of G such that G/H is

supersolvable. If all maximal subgroups of all Sylow subgroups of H are either

semi-p-cover-avoiding or ss-quasinormal in G, then G is supersolvable.

Theorem 3.6. Let F be a saturated formation containing U . Suppose that

G is a group with a solvable normal subgroup H such that G/H ∈ F . If all

maximal subgroups of all Sylow subgroups of F (H) are either semi-p-cover-
avoiding or ss-quasinormal in G, then G ∈ F .

Proof. As H is solvable, by Lemma 2.7, F (H) = F ∗(H). For any Sylow sub-
group P of F (H) and for any maximal subgroup P1 of P , if P1 is ss-quasinormal
in G, then P1 is s-quasinormally embedded in G by Lemma 2.5. Applying
Lemma 2.6(ii), we can get G ∈ F . �

Theorem 3.7. Let F be a saturated formation containing U . Suppose that

G is a group with a normal subgroup H such that G/H ∈ F . If all maximal

subgroups of all Sylow subgroups of F ∗(H) are either semi-p-cover-avoiding or

ss-quasinormal in G, then G ∈ F .

Proof. Suppose that the theorem is false and let G be a minimal counter-
example.

Case 1. F = U .
Let G be a minimal counter-example.
(1) Every proper normal subgroup N of G containing F ∗(H) is supersolv-

able.
Since N/N ∩ H ∼= NH/H is supersolvble, we get F ∗(H) = F ∗(F ∗(H)) ≤

F ∗(N ∩H) ≤ F ∗(H) by Lemma 2.7. So F ∗(H) = F ∗(N ∩H) and N , N ∩H
satisfy the hypothesis of the theorem. Hence N is supersolvable by the minimal
choice of G.
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(2) H = G and 1 6= F ∗(G) = F (G) < G.
IfH < G, thenH is supersolvable asH contains F ∗(H) and F ∗(H) = F (H),

it follows that G is supersolvable by Theorem 3.6, a contradiction.
If F ∗(G) = G, then G is supersolvable by applying Corollary 3.5, a contra-

diction. Thus F ∗(G) < G, it is supersolvable by (1), so F ∗(G) = F (G) 6= 1 by
Lemma 2.7.

(3) The final contradiction.
For any Sylow subgroup P of F ∗(H) and for any maximal subgroup P1 of P ,

P1 is either semi-p-cover-avoiding or ss-quasinormal in G by the hypothesis. As
P1 ≤ F (G), so P1 is either semi-p-cover-avoiding or s-quasinormally embedded
in G by Lemma 2.5. Applying Lemma 2.6(ii), we can get G is supersolvable,
the final contradiction.

Case 2. F 6= U .
By Case 1, H is supersolvable, so H is solvable and F ∗(H) = F (H) by

Lemma 2.7. Then G ∈ F by Theorem 3.6. �
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