DOI QR코드

DOI QR Code

The Heterochromatin-1 Phosphorylation Contributes to TPA-Induced AP-1 Expression

  • Received : 2014.05.19
  • Accepted : 2014.05.26
  • Published : 2014.07.31

Abstract

Activator protein-1 (AP-1) is an inducible transcription factor that contributes to the generation of chronic inflammation in response to oxidative and electrophilic stress. Previous studies have demonstrated that the PI3K/Akt1 pathway plays an important role in the transcriptional regulation of AP-1 expression. Although the histone post-translational modifications (PTMs) are assumed to affect the AP-1 transcriptional regulation by the PI3K/Akt pathway, the detailed mechanisms are completely unknown. In the present study, we show that heterochromatin 1 gamma ($HP1{\gamma}$) plays a negative role in TPA-induced c-Jun and c-Fos expression. We show that TPA-induced Akt1 directly phosphorylates $HP1{\gamma}$, abrogates its suppressive function and increases the interaction between histone H3 and 14-3-$3{\varepsilon}$. Collectively, these our data illustrate that the activation of PI3K/Akt pathway may play a permissive role in the recruitment of histone readers or other coactivators on the chromatin, thereby affecting the degree of AP-1 transcription.

Keywords

References

  1. Allis, C. D., Berger, S. L., Cote, J., Dent, S., Jenuwien, T., Kouzarides, T., Pillus, L., Reinberg, D., Shi, Y., Shiekhattar, R., Shilatifard, A., Workman, J. and Zhang, Y. (2007). New nomenclature for chromatin-modifying enzymes. Cell 131, 633-636. https://doi.org/10.1016/j.cell.2007.10.039
  2. Angel, P. and Karin, M. (1991). The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta 1072, 129-157.
  3. Calixto, J. B., Campos, M. M., Otuki, M. F. and Santos, A. R. (2004). Anti-infl ammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med. 70, 93-103. https://doi.org/10.1055/s-2004-815483
  4. Cardesa, A., Zidar, N., Alos, L., Nadal, A., Gale, N. and Kloppel, G. (2011). The Kaiser's cancer revisited: was Virchow totally wrong? Virchows Arch. 458, 649-657. https://doi.org/10.1007/s00428-011-1075-0
  5. Chinenov, Y. and Kerppola, T. K. (2001). Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specifi city. Oncogene 20, 2438-2452. https://doi.org/10.1038/sj.onc.1204385
  6. Clayton, A. L. and Mahadevan, L. C. (2003). MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett. 546, 51-58. https://doi.org/10.1016/S0014-5793(03)00451-4
  7. Fischle, W., Tseng, B. S., Dormann, H. L., Ueberheide, B. M., Garcia, B. A., Shabanowitz, J., Hunt, D. F., Funabiki, H. and Allis, C. D. (2005). Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116-1122. https://doi.org/10.1038/nature04219
  8. Jenuwein, T. and Allis, C. D. (2001). Translating the histone code. Science 293, 1074-1080. https://doi.org/10.1126/science.1063127
  9. Karin, M. (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270, 16483-16486. https://doi.org/10.1074/jbc.270.28.16483
  10. Keum, Y. S., Kim, H. G., Bode, A. M., Surh, Y. J. and Dong, Z. (2013). UVB-induced COX-2 expression requires histone H3 phosphorylation at Ser10 and Ser28. Oncogene 32, 444-452. https://doi.org/10.1038/onc.2012.71
  11. Kong, A. N., Yu, R., Hebbar, V., Chen, C., Owuor, E., Hu, R., Ee, R. and Mandlekar, S. (2001). Signal transduction events elicited by cancer prevention compounds. Mutat. Res. 480-481, 231-241. https://doi.org/10.1016/S0027-5107(01)00182-8
  12. Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705. https://doi.org/10.1016/j.cell.2007.02.005
  13. Kundu, J. K. and Surh, Y. J. (2004). Molecular basis of chemoprevention by resveratrol: NF-kappaB and AP-1 as potential targets. Mutat. Res. 555, 65-80. https://doi.org/10.1016/j.mrfmmm.2004.05.019
  14. Kwon, S. H. and Workman, J. L. (2011). The changing faces of HP1: From heterochromatin formation and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of transcription. Bioessays 33, 280-289. https://doi.org/10.1002/bies.201000138
  15. Lomberk, G., Bensi, D., Fernandez-Zapico, M. E. and Urrutia, R. (2006). Evidence for the existence of an HP1-mediated subcode within the histone code. Nat. Cell Biol. 8, 407-415. https://doi.org/10.1038/ncb1383
  16. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. and Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260. https://doi.org/10.1038/38444
  17. Macdonald, N., Welburn, J. P., Noble, M. E., Nguyen, A., Yaffe, M. B., Clynes, D., Moggs, J. G., Orphanides, G., Thomson, S., Edmunds, J. W., Clayton, A. L., Endicott, J. A. and Mahadevan, L. C. (2005). Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3. Mol. Cell 20, 199-211. https://doi.org/10.1016/j.molcel.2005.08.032
  18. Nowak, S. J. and Corces, V. G. (2004). Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20, 214-220. https://doi.org/10.1016/j.tig.2004.02.007
  19. Shilatifard, A. (2006). Chromatin modifi cations by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem. 75, 243-269. https://doi.org/10.1146/annurev.biochem.75.103004.142422
  20. Strahl, B. D. and Allis, C. D. (2000). The language of covalent histone modifications. Nature 403, 41-45. https://doi.org/10.1038/47412
  21. Surh, Y. J., Kundu, J. K., Na, H. K. and Lee, J. S. (2005). Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J. Nutr. 135, 2993S-3001S. https://doi.org/10.1093/jn/135.12.2993S
  22. Wang, G. G., Allis, C. D. and Chi, P. (2007). Chromatin remodeling and cancer, Part I: Covalent histone modifications. Trends Mol. Med. 13, 363-372. https://doi.org/10.1016/j.molmed.2007.07.003
  23. Winter, S., Fischle, W. and Seiser, C. (2008). Modulation of 14-3-3 interaction with phosphorylated histone H3 by combinatorial modification patterns. Cell Cycle 7, 1336-1342. https://doi.org/10.4161/cc.7.10.5946
  24. Wisdom, R. (1999). AP-1: one switch for many signals. Exp. Cell Res. 253, 180-185. https://doi.org/10.1006/excr.1999.4685
  25. Yaffe, M. B. (2002). How do 14-3-3 proteins work?-- Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 513, 53-57. https://doi.org/10.1016/S0014-5793(01)03288-4

Cited by

  1. Thioredoxin 1 protects astrocytes from oxidative stress by maintaining peroxiredoxin activity vol.13, pp.3, 2016, https://doi.org/10.3892/mmr.2016.4855
  2. Psoralen inhibits the inflammatory response and mucus production in allergic rhinitis by inhibiting the activator protein 1 pathway and the downstream expression of cystatin‑SN vol.24, pp.3, 2014, https://doi.org/10.3892/mmr.2021.12291