References
- Allis, C. D., Berger, S. L., Cote, J., Dent, S., Jenuwien, T., Kouzarides, T., Pillus, L., Reinberg, D., Shi, Y., Shiekhattar, R., Shilatifard, A., Workman, J. and Zhang, Y. (2007). New nomenclature for chromatin-modifying enzymes. Cell 131, 633-636. https://doi.org/10.1016/j.cell.2007.10.039
- Angel, P. and Karin, M. (1991). The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta 1072, 129-157.
- Calixto, J. B., Campos, M. M., Otuki, M. F. and Santos, A. R. (2004). Anti-infl ammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med. 70, 93-103. https://doi.org/10.1055/s-2004-815483
- Cardesa, A., Zidar, N., Alos, L., Nadal, A., Gale, N. and Kloppel, G. (2011). The Kaiser's cancer revisited: was Virchow totally wrong? Virchows Arch. 458, 649-657. https://doi.org/10.1007/s00428-011-1075-0
- Chinenov, Y. and Kerppola, T. K. (2001). Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specifi city. Oncogene 20, 2438-2452. https://doi.org/10.1038/sj.onc.1204385
- Clayton, A. L. and Mahadevan, L. C. (2003). MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett. 546, 51-58. https://doi.org/10.1016/S0014-5793(03)00451-4
- Fischle, W., Tseng, B. S., Dormann, H. L., Ueberheide, B. M., Garcia, B. A., Shabanowitz, J., Hunt, D. F., Funabiki, H. and Allis, C. D. (2005). Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116-1122. https://doi.org/10.1038/nature04219
- Jenuwein, T. and Allis, C. D. (2001). Translating the histone code. Science 293, 1074-1080. https://doi.org/10.1126/science.1063127
- Karin, M. (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270, 16483-16486. https://doi.org/10.1074/jbc.270.28.16483
- Keum, Y. S., Kim, H. G., Bode, A. M., Surh, Y. J. and Dong, Z. (2013). UVB-induced COX-2 expression requires histone H3 phosphorylation at Ser10 and Ser28. Oncogene 32, 444-452. https://doi.org/10.1038/onc.2012.71
- Kong, A. N., Yu, R., Hebbar, V., Chen, C., Owuor, E., Hu, R., Ee, R. and Mandlekar, S. (2001). Signal transduction events elicited by cancer prevention compounds. Mutat. Res. 480-481, 231-241. https://doi.org/10.1016/S0027-5107(01)00182-8
- Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705. https://doi.org/10.1016/j.cell.2007.02.005
- Kundu, J. K. and Surh, Y. J. (2004). Molecular basis of chemoprevention by resveratrol: NF-kappaB and AP-1 as potential targets. Mutat. Res. 555, 65-80. https://doi.org/10.1016/j.mrfmmm.2004.05.019
- Kwon, S. H. and Workman, J. L. (2011). The changing faces of HP1: From heterochromatin formation and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of transcription. Bioessays 33, 280-289. https://doi.org/10.1002/bies.201000138
- Lomberk, G., Bensi, D., Fernandez-Zapico, M. E. and Urrutia, R. (2006). Evidence for the existence of an HP1-mediated subcode within the histone code. Nat. Cell Biol. 8, 407-415. https://doi.org/10.1038/ncb1383
- Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. and Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260. https://doi.org/10.1038/38444
- Macdonald, N., Welburn, J. P., Noble, M. E., Nguyen, A., Yaffe, M. B., Clynes, D., Moggs, J. G., Orphanides, G., Thomson, S., Edmunds, J. W., Clayton, A. L., Endicott, J. A. and Mahadevan, L. C. (2005). Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3. Mol. Cell 20, 199-211. https://doi.org/10.1016/j.molcel.2005.08.032
- Nowak, S. J. and Corces, V. G. (2004). Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20, 214-220. https://doi.org/10.1016/j.tig.2004.02.007
- Shilatifard, A. (2006). Chromatin modifi cations by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem. 75, 243-269. https://doi.org/10.1146/annurev.biochem.75.103004.142422
- Strahl, B. D. and Allis, C. D. (2000). The language of covalent histone modifications. Nature 403, 41-45. https://doi.org/10.1038/47412
- Surh, Y. J., Kundu, J. K., Na, H. K. and Lee, J. S. (2005). Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J. Nutr. 135, 2993S-3001S. https://doi.org/10.1093/jn/135.12.2993S
- Wang, G. G., Allis, C. D. and Chi, P. (2007). Chromatin remodeling and cancer, Part I: Covalent histone modifications. Trends Mol. Med. 13, 363-372. https://doi.org/10.1016/j.molmed.2007.07.003
- Winter, S., Fischle, W. and Seiser, C. (2008). Modulation of 14-3-3 interaction with phosphorylated histone H3 by combinatorial modification patterns. Cell Cycle 7, 1336-1342. https://doi.org/10.4161/cc.7.10.5946
- Wisdom, R. (1999). AP-1: one switch for many signals. Exp. Cell Res. 253, 180-185. https://doi.org/10.1006/excr.1999.4685
- Yaffe, M. B. (2002). How do 14-3-3 proteins work?-- Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 513, 53-57. https://doi.org/10.1016/S0014-5793(01)03288-4
Cited by
- Thioredoxin 1 protects astrocytes from oxidative stress by maintaining peroxiredoxin activity vol.13, pp.3, 2016, https://doi.org/10.3892/mmr.2016.4855
- Psoralen inhibits the inflammatory response and mucus production in allergic rhinitis by inhibiting the activator protein 1 pathway and the downstream expression of cystatin‑SN vol.24, pp.3, 2014, https://doi.org/10.3892/mmr.2021.12291