DOI QR코드

DOI QR Code

Fucodiphlorethol G Purified from Ecklonia cava Suppresses Ultraviolet B Radiation-Induced Oxidative Stress and Cellular Damage

  • Kim, Ki Cheon (School of Medicine and Institute for Nuclear Science and Technology) ;
  • Piao, Mei Jing (School of Medicine and Institute for Nuclear Science and Technology) ;
  • Zheng, Jian (School of Medicine and Institute for Nuclear Science and Technology) ;
  • Yao, Cheng Wen (School of Medicine and Institute for Nuclear Science and Technology) ;
  • Cha, Ji Won (School of Medicine and Institute for Nuclear Science and Technology) ;
  • Kumara, Madduma Hewage Susara Ruwan (School of Medicine and Institute for Nuclear Science and Technology) ;
  • Han, Xia (School of Medicine and Institute for Nuclear Science and Technology) ;
  • Kang, Hee Kyoung (School of Medicine and Institute for Nuclear Science and Technology) ;
  • Lee, Nam Ho (Department of Chemistry, College of Natural Sciences, Jeju National University) ;
  • Hyun, Jin Won (School of Medicine and Institute for Nuclear Science and Technology)
  • Received : 2014.04.16
  • Accepted : 2014.06.11
  • Published : 2014.07.31

Abstract

Fucodiphlorethol G (6'-[2,4-dihydroxy-6-(2,4,6-trihydroxyphenoxy)phenoxy]biphenyl-2,2',4,4',6-pentol) is a compound purified from Ecklonia cava, a brown alga that is widely distributed offshore of Jeju Island. This study investigated the protective effects of fucodiphlorethol G against oxidative damage-mediated apoptosis induced by ultraviolet B (UVB) irradiation. Fucodiphlorethol G attenuated the generation of 2, 2-diphenyl-1-picrylhydrazyl radicals and intracellular reactive oxygen species in response to UVB irradiation. Fucodiphlorethol G suppressed the inhibition of human keratinocyte growth by UVB irradiation. Additionally, the wavelength of light absorbed by fucodiphlorethol G was close to the UVB spectrum. Fucodiphlorethol G reduced UVB radiation-induced 8-isoprostane generation and DNA fragmentation in human keratinocytes. Moreover, fucodiphlorethol G reduced UVB radiation-induced loss of mitochondrial membrane potential, generation of apoptotic cells, and active caspase-9 expression. Taken together, fucodiphlorethol G protected human keratinocytes against UVB radiation-induced cell damage and apoptosis by absorbing UVB radiation and scavenging reactive oxygen species.

Keywords

References

  1. Ali, D., Verma, A., Mujtaba, F., Dwivedi, A., Hans, R. K. and Ray, R. S. (2011) UVB-induced apoptosis and DNA damaging potential of chrysene via reactive oxygen species in human keratinocytes. Toxicol. Lett. 204, 199-207. https://doi.org/10.1016/j.toxlet.2011.04.033
  2. Arends, M. J., Morris, R. G. and Wyllie, A. H. (1990) Apoptosis. The role of the endonuclease. Am. J. Pathol. 136, 593-608.
  3. Bais, A. F., Zerefos, C. S., Meleti, C., Ziomas, I. C. and Tourpali, K. (1993) Spectral measurements of solar UVB radiation and its relations to total ozone, $SO_2$, and clouds. J. Geophys. Res. 98, 5199-5204. https://doi.org/10.1029/92JD02904
  4. Belli, R., Amerio, P., Brunetti, L., Orlando, G., Toto, P., Proietto, G., Vacca, M. and Tulli, A. (2005) Elevated 8-isoprostane levels in basal cell carcinoma and in UVA irradiated skin. Int. J. Immunopathol. Pharmacol. 18, 497-502. https://doi.org/10.1177/039463200501800309
  5. Bolaji, B. and Huan, Z. (2013) Ozone depletion and global warming: Case for the use of natural refrigerant-a review. Renew. Sustain. Energy Rev. 18, 49-54. https://doi.org/10.1016/j.rser.2012.10.008
  6. Bulteau, A. L., Moreau, M., Saunois, A., Nizard, C. and Friguet, B. (2006) Algae extract-mediated stimulation and protection of proteasome activity within human keratinocytes exposed to UVA and UVB irradiation. Antioxid. Redox Signal. 8, 136-143. https://doi.org/10.1089/ars.2006.8.136
  7. Caricchio, R., McPhie, L. and Cohen, P. L. (2003) Ultraviolet B radiation-induced cell death: critical role of ultraviolet dose in inflammation and lupus autoantigen redistribution. J. Immunol. 171, 5778-5786. https://doi.org/10.4049/jimmunol.171.11.5778
  8. Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, J. B. (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47, 936-942.
  9. Drouin, R. and Therrien, J. P. (1997) UVB-induced cyclobutane pyrimidine dimer frequency correlates with skin cancer mutational hotspots in p53. Photochem. Photobiol. 66, 719-726. https://doi.org/10.1111/j.1751-1097.1997.tb03213.x
  10. Fagot, D., Asselineau, D. and Bernerd, F. (2002) Direct role of human dermal fibroblasts and indirect participation of epidermal keratinocytes in MMP-1 production after UV-B irradiation. Arch. Dermatol. Res. 293, 576-583. https://doi.org/10.1007/s00403-001-0271-1
  11. Ham, Y. M., Baik, J. S., Hyun, J. W. and Lee, N. H. (2007) Isolation of a new phlorotannin, fucodiphlorethol G, from a brown alga Ecklonia cava. Bull. Korean Chem. Soc. 28, 1595-1597. https://doi.org/10.5012/bkcs.2007.28.9.1595
  12. Holick, M. F. (2004) Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am. J. Clin. Nutr. 80, 1678S-1688S. https://doi.org/10.1093/ajcn/80.6.1678S
  13. Hwang, H., Chen, T., Nines, R. G., Shin, H. and Stoner, G. D. (2006) Photochemoprevention of UVB-induced skin carcinogenesis in SKH-1 mice by brown algae polyphenols. Int. J. Cancer 119, 2742-2749. https://doi.org/10.1002/ijc.22147
  14. Ichihashi, M., Ueda, M., Budiyanto, A., Bito, T., Oka, M., Fukunaga, M., Tsuru, K. and Horikawa, T. (2003) UV-induced skin damage. Toxicology 189, 21-39. https://doi.org/10.1016/S0300-483X(03)00150-1
  15. Kulms, D. and Schwarz, T. (2002) Molecular mechanisms involved in UV-induced apoptotic cell death. Skin Pharmacol. Appl. Skin Physiol. 15, 342-347. https://doi.org/10.1159/000064539
  16. McKenzie, R. L., Aucamp, P. J., Bais, A. F., Bjorn, L. O., Ilyas, M. and Madronich, S. (2011) Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 10, 182-198. https://doi.org/10.1039/c0pp90034f
  17. Petrova, A., Davids, L. M., Rautenbach, F. and Marnewick, J. L. (2011) Photoprotection by honeybush extracts, hesperidin and mangiferin against UVB-induced skin damage in SKH-1 mice. J. Photochem. Photobiol. B 103, 126-139. https://doi.org/10.1016/j.jphotobiol.2011.02.020
  18. Piao, M. J., Lee, N. H., Chae, S. and Hyun, J. W. (2012a) Eckol inhibits ultraviolet B-induced cell damage in human keratinocytes via a decrease in oxidative stress. Biol. Pharm. Bull. 35, 873-880. https://doi.org/10.1248/bpb.35.873
  19. Piao, M. J., Zhang, R., Lee, N. H. and Hyun, J. W. (2012b) Protective effect of triphlorethol-A against ultraviolet B-mediated damage of human keratinocytes. J. Photochem. Photobiol. B. 106, 74-80. https://doi.org/10.1016/j.jphotobiol.2011.10.007
  20. Ravanat, J. L., Douki, T. and Cadet, J. (2001) Direct and indirect effects of UV radiation on DNA and its components. J. Photochem. Photobiol. B. 63, 88-102. https://doi.org/10.1016/S1011-1344(01)00206-8
  21. Rosenkranz, A. R., Schmaldienst, S., Stuhlmeier, K. M., Chen, W., Knapp, W. and Zlabinger, G. J. (1992) A microplate assay for the de tection of oxidative products using 2',7'-dichlorofl uorescin-diacetate. J. Immunol. Methods 156, 39-45. https://doi.org/10.1016/0022-1759(92)90008-H
  22. Sander, C. S., Chang, H., Salzmann, S., Muller, C. S., Ekanayake-Mudiyanselage, S., Elsner, P. and Thiele, J. J. (2002) Photoaging is associated with protein oxidation in human skin in vivo. J. Invest. Dermatol. 118, 618-625. https://doi.org/10.1046/j.1523-1747.2002.01708.x
  23. Shih, M. F. and Cherng, J. Y. (2008) Potential protective effect of fresh grown unicellular green algae component (resilient factor) against PMA- and UVB-induced MMP1 expression in skin fi broblasts. Eur. J. Dermatol. 18, 303-307.
  24. Svobodova, A. R., Galandakova, A., Sianska, J., Dolezal, D., Lichnovska, R., Ulrichova, J., and Vostalova, J. (2012) DNA damage after acute exposure of mice skin to physiological doses of UVB and UVA light. Arch. Dermatol. Res. 304, 407-412. https://doi.org/10.1007/s00403-012-1212-x
  25. Troiano, L., Ferraresi, R., Lugli, E., Nemes, E., Roat, E., Nasi, M., Pinti, M. and Cossarizza, A. (2007) Multiparametric analysis of cells with different mitochondrial membrane potential during apoptosis by polychromatic flow cytometry. Nat. Protoc. 2, 2719-2727. https://doi.org/10.1038/nprot.2007.405
  26. Tsujimoto, Y. (1998) Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 3, 697-707. https://doi.org/10.1046/j.1365-2443.1998.00223.x
  27. Wacker, M. and Holick, M. F. (2013) Vitamin D - effects on skeletal and extraskeletal health and the need for supplementation. Nutrients 5, 111-148. https://doi.org/10.3390/nu5010111
  28. Wolfl e, U., Esser, P. R., Simon-Haarhaus, B., Martin, S. F., Lademann, J. and Schempp, C. M. (2011) UVB-induced DNA damage, generation of reactive oxygen species, and inflammation are effectively attenuated by the flavonoid luteolin in vitro and in vivo. Free Radic. Biol. Med. 50, 1081-1093. https://doi.org/10.1016/j.freeradbiomed.2011.01.027

Cited by

  1. Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: A review vol.162, 2016, https://doi.org/10.1016/j.jphotobiol.2016.06.027
  2. Transcriptional responses in Ecklonia cava to short-term exposure to hyperthermal stress vol.8, pp.2, 2016, https://doi.org/10.1007/s13530-016-0275-z
  3. Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage vol.23, pp.4, 2015, https://doi.org/10.4062/biomolther.2015.005
  4. Antiproliferative and Apoptosis-Inducing Activities of 4-Isopropyl-2,6-bis(1-phenylethyl)phenol Isolated from Butanol Fraction ofCordyceps bassiana vol.2015, 2015, https://doi.org/10.1155/2015/739874
  5. Marine natural products vol.33, pp.3, 2016, https://doi.org/10.1039/C5NP00156K
  6. Recent advances in pharmacological research on Ecklonia species: a review vol.40, pp.9, 2017, https://doi.org/10.1007/s12272-017-0948-4
  7. Dieckol, a Component of Ecklonia cava, Suppresses the Production of MDC/CCL22 via Down-Regulating STAT1 Pathway in Interferon-γ Stimulated HaCaT Human Keratinocytes vol.23, pp.3, 2015, https://doi.org/10.4062/biomolther.2014.141
  8. The promise of marine molecules as cosmetic active ingredients vol.40, pp.1, 2018, https://doi.org/10.1111/ics.12435
  9. Seaweeds as Source of Bioactive Substances and Skin Care Therapy—Cosmeceuticals, Algotheraphy, and Thalassotherapy vol.5, pp.4, 2018, https://doi.org/10.3390/cosmetics5040068
  10. Metagenomic Analysis of Bacterial Communities Associated with Four Ecklonia cava Populations, Including Dokdo Island Population vol.11, pp.1, 2014, https://doi.org/10.1007/s13530-019-0383-7
  11. Protective effects of Ecklonia cava extract on the toxicity and oxidative stress induced by hair dye in in-vitro and in-vivo models vol.37, pp.3, 2019, https://doi.org/10.1007/s00343-019-8148-3
  12. Marine Pharmacology in 2014–2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affe vol.18, pp.1, 2020, https://doi.org/10.3390/md18010005
  13. Potential Anti-Aging Substances Derived from Seaweeds vol.18, pp.11, 2020, https://doi.org/10.3390/md18110564
  14. Effects of artificial ultraviolet B radiation on the macrophyte Lemna minor: a conceptual study for toxicity pathway characterization vol.252, pp.5, 2020, https://doi.org/10.1007/s00425-020-03482-3
  15. Anti-Photoaging and Potential Skin Health Benefits of Seaweeds vol.19, pp.3, 2021, https://doi.org/10.3390/md19030172
  16. Antiaging compounds from marine organisms vol.143, pp.None, 2021, https://doi.org/10.1016/j.foodres.2021.110313
  17. Metabolites with Antioxidant Activity from Marine Macroalgae vol.10, pp.9, 2014, https://doi.org/10.3390/antiox10091431
  18. Extraction and Nano-Sized Delivery Systems for Phlorotannins to Improve Its Bioavailability and Bioactivity vol.19, pp.11, 2014, https://doi.org/10.3390/md19110625