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Abstract

Recently Hazelton and Turlach (2009) proposed a weighted kernel density estimator
for the deconvolution problem. In the case of Gaussian kernels and measurement er-
ror, they argued that the weighted kernel density estimator is a competitive estimator
over the classical deconvolution kernel estimator. In this paper we consider weighted
kernel density estimators when sample observations are contaminated by double expo-
nentially distributed errors. The performance of the weighted kernel density estimators
is compared over the classical deconvolution kernel estimator and the kernel density es-
timator based on the support vector regression method by means of a simulation study.
The weighted density estimator with the Gaussian kernel shows numerical instability
in practical implementation of optimization function. However the weighted density
estimates with the double exponential kernel has very similar patterns to the classical
kernel density estimates in the simulations, but the shape is less satisfactory than the
classical kernel density estimator with the Gaussian kernel.

Keywords: Deconvolution, kernel density estimator, support vector regression, weighted
kernel density estimator.

1. Introduction

In this paper we consider nonparametric density estimation of a random variable when
we observe contaminated data instead of true data. The problem of contaminated data with
noise exists in many different fields such as biostatistics, chemistry and public health. See for
example Stefanski and Carroll (1990) or Carroll et al. (1995). This deconvolution problem
of interest can be stated as follows. Let X and Z be independent random variables with
density functions f(x) and q(z), respectively, where f(x) is unknown and q(z) is known.
We observe a univariate random sample Y1, Y2, · · · , Yn from a density g(y), where Yi =
Xi +Zi, i = 1, 2, · · · , n. The objective is to estimate the density function f(x) where g(y) is
the convolution of f(x) and q(z), g(y) = (f ∗ q)(y) =

∫∞
−∞ f(y − z)q(z)dz.

The most popular approach to this deconvolution problems has been to estimate f(x)
by a kernel estimator and Fourier transform (e.g. Carroll and Hall, 1988; Stefanski and
Carroll, 1990; Liu and Taylor, 1989; Fan, 1991). While kernel density estimation is widely
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considered as the most popular approach to density deconvolution, other alternatives have
been proposed such as spline based procedures, wavelet methods, EM algorithm, Fourier
series and transforms and support vector methods. See for example Mendelsohn and Rice
(1982), Koo and Park (1996), Pensky and Vidakovic (1999), Eggermont and LaRiccia (1997),
Hall and Qiu (2005), Lee and Taylor (2008) and Lee (2012).

The asymptotic properties of the kernel density estimator in deconvolution problems de-
pend strongly on the error distribution. Following the work of Fan (1991), two types of error
distributions can be considered: ordinary smooth and supersmooth distributions. Normal,
mixture normal, and Cauchy distributions are supersmooth, that is, the Fourier transform
q̃(ξ) (=

∫∞
−∞ e−iξzq(z)dz) of q(z) satisfies

d0|ξ|−β0 exp(−|ξ|β/γ) ≤ |q(ξ)| ≤ d1|ξ|−β1 exp(−|ξ|β/γ) as ξ →∞,

for some positive constants d0, d1, β, γ and constants β0 and β1. Gamma and double expo-
nential distributions are ordinary smooth, that is, the Fourier transform q̃(ξ) of q(z) satisfies

d0|ξ|−β ≤ |q(ξ)| ≤ d1|ξ|−β as ξ →∞,

for some positive constants d0, d1, β. Thus in the classical deconvolution literature, normal
and double exponential distributions have been typically selected and investigated as error
distributions.

The asymptotic theory in two types of error distributions (e.g. Carroll and Hall, 1988;
Stefanski and Carroll, 1990; Fan, 1991; Wand, 1998) shows that the optimal rate of conver-
gence for supersmooth error distributions is logarithmic and hence very slow. However, for
ordinary smooth error distributions reasonably good algebraic rates are obtained and hence
much faster. For example, Wand (1998) show that if f(x) is a mixture normal distribution,
then the rate of convergence of the mean integrated squared error (MISE) of the classical
deconvolution kernel estimator is n−4/5 for error-free data, (log n)−1 for Gaussian error and
n−4/9 for double exponential error.

Recently Hazelton and Turlach (2009) proposed a weighted kernel density estimator for
the deconvolution problem. One attraction of the weighted kernel density estimator is that
it will take non-negative values. They also showed that if the optimal weighting scheme
ωi (= f(Yi)/g(Yi)) was known, then the estimator would have MISE of an asymptotic order
of n−4/5. However, as the authors indicate, this rate is not achievable in practice because
ωi (= f(Yi)/g(Yi)) is a function of the unknown target density f(x). In cases with the
Gaussian kernel and measurement error, they showed that the estimator has the simple
expression and argued that the weighted kernel density estimator is a competitive estimator
over the classical deconvolution kernel estimator through a simulation study.

In this paper weighted density estimators based on the Gaussian kernel and the double
exponential kernel are considered when sample observations are contaminated by double
exponentially distributed errors. The performance of the weighted kernel density estimators
is compared over the classical deconvolution kernel estimator and kernel density estimators
based on the support vector regression method by means of a simulation study.

2. Weighted kernel density estimators

Hazelton and Turlach (2009) proposed a weighted kernel density estimator for the de-
convolution problem. In the case of Gaussian kernels and measurement error, the weighted
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kernel density estimators is given by

f̂ω(x) =
1

n

n∑
i=1

ωiKh(x− Yi),

where
∑n
i=1 ωi = n, ωi ≥ 0, i = 1, 2, · · · , n, Kh(x) = (

√
2πσh)−1e−x

2/2σ2
h . The unknown

weight vector ω will be chosen so as to minimize the objective function

Q(ω) =

∫ ∞
−∞

(f̂ω ∗ q(y)− ĝ(y))2dy,

=
1

n2

 n∑
i=1

n∑
j=1

ωiωjφ√2λ(Yi − Yj) +

n∑
i=1

n∑
j=1

φh
√
2(Yi − Yj)− 2

n∑
i=1

n∑
j=1

ωiφν(Yi − Yj)


where φλ(x) = (

√
2πσλ)−1e−x

2/2σ2
λ , φh(x) = (

√
2πσh)−1e−x

2/2σ2
h , σ2

λ = σ2
h + σ2

Z , σ
2
ν =

σ2
Z + 2σ2

h, and ĝ(y) = 1
n

∑n
i=1Kh(y − Yi).

In cases with the Gaussian kernel and measurement error, they showed that the weighted
kernel density estimation can lead to tangible improvements in performance over the classical
deconvolution kernel estimator by numerical tests.

In case of a double exponentially distributed error, the weighted kernel density estimator
with the Gaussian kernel (Lee, 2010) is given by

f̂ω(x) =
1

n

n∑
i=1

ωiKh(x− Yi) (2.1)

where
∑n
i=1 ωi = n, ωi ≥ 0, i = 1, 2, · · · , n, Kh(x) = (

√
2πσh)−1e−x

2/2σ2
h . The unknown

weight vector ω will be chosen so as to minimize the objective function

Q(ω) =

∫ ∞
−∞

(f̂ω ∗ q(y)− ĝ(y))2dy

=

∫ ∞
−∞

(∫ ∞
−∞

1

n

n∑
i=1

ωi

2
√

2πσhσz
e−(x−Yi)2/2σ2

h−|y−x|/σzdx−
1

n

n∑
i=1

1
√

2πσh
e−(y−Yi)2/2σ2

h

)2

dy

=

n∑
i=1

n∑
j=1

ωiωj
eσ

2
h/σ

2
z

4σ2
zn

2

∫ ∞
−∞

(
e−(y−Yi)/σzΦ

(
y − Yi − σ2

h/σz

σh

)
+ e(y−Yi)/σz

(
1− Φ

(
y − Yi + σ2

h/σz

σh

)))

×
(
e−(y−Yj)/σzΦ

(
y − Yj − σ2

h/σz

σh

)
+ e(y−Yj)/σz

(
1− Φ

(
y − Yj + σ2

h/σz

σh

)))
dy

−
n∑
i=1

ωi
eσ

2
h/2σ

2
z

σzn2

∫ ∞
−∞

{(
e−(y−Yi)/σzΦ

(
y − Yi − σ2

h/σz

σh

)
+ e(y−Yi)/σz

(
1− Φ

(
y − Yi + σ2

h/σz

σh

)))

×
(

n∑
i=1

1
√

2πσh
e−(y−Yi)2/2σ2

h

)}
dy +

∫ ∞
−∞

{
1

n

n∑
i=1

1
√

2πσh
e−(y−Yi)2/2σ2

h

}2

dy
(2.2)

where ĝ(y) = 1
n

∑n
i=1Kh(y − Yi) and Φ(x) =

∫ x
−∞

1√
2π
e−t

2/2dt .

As equation (2.2) indicates, the coefficients are not available in closed form and hence a
numerical method is needed :
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minimizeω
1

2
ω

′
Hω + f

′
ω,

subject to

n∑
i=1

ωi = n, ωi ≥ 0, i = 1, 2, · · · , n.

In practical implementation of calculation of integrals and optimization, numerical insta-
bility is faced and computational time (running on a 3.2 GHz PC with 3.4 GB RAM) rapidly
increases as the sample size increases. The solution in the quadratic programming to mini-
mize quadratic function subject to constraints is unstable. As it is indicated in Delaigle and
Gijbels (2007), more adequate numerical procedure in calculating integrals and optimizing
objective functions is needed. Thus, only a very limited figure is presented in Section 3.

In this section, we propose another weighted kernel density estimator such that the coef-
ficients are available in closed form. It is well known that in kernel density estimation the
choice of kernel is not crucial, but the choice of bandwidth is important. Thus we try to
evaluate a weighted kernel density estimator based on the double exponential kernel in this
deconvolution problem. Let

f̂ω(x) =
1

n

n∑
i=1

ωiKh(x− Yi) (2.3)

where ωi ≥ 0,
∑n
i=1 ωi = n, Kh(x) = (2σh)−1e−|x|/σh . Then the unknown weight vector ω

will be chosen so as to minimize the objective function

Q(ω) =

∫ ∞
−∞

(f̂ω ∗ q(y)− ĝ(y))2dy

=

∫ ∞
−∞

[{∫ ∞
−∞

(
1

n

n∑
i=1

ωiKh(x− Yi)
)
×

1

2σz
e−|y−x|/σzdx

}
−

1

n

n∑
i=1

Kh(y − Yi)
]2
dy

=

∫ ∞
−∞

[{∫ ∞
−∞

1

4nσhσz

n∑
i=1

ωie
−|x−Yi|/σhe−|y−x|/σzdx

}
−

1

2nσh

n∑
i=1

e−|y−Yi|/σh

]2
dy

=
1

16n2σ2
hσ

2
z

n∑
i=1

n∑
j=1

∫ ∞
−∞

ωiωj

{∫ ∞
−∞

e−|t+(y−Yi)|/σhe−|t|/σzdt

}

×
{∫ ∞
−∞

e−|t+(y−Yj)|/σhe−|t|/σzdt
}
dy +

1

4n2σ2
h

n∑
i=1

n∑
j=1

∫ ∞
−∞

e−|y−Yi|/σhe−|y−Yj |/σhdy

−
1

4n2σ2
hσ

2
z

n∑
i=1

n∑
j=1

∫ ∞
−∞

{∫ ∞
−∞

ωie
−|t+(y−Yi)|/σhe−|t|/σzdt

}
× e−|y−Yj |/σhdy

=
1

16n2σ2
hσ

2
z

n∑
i=1

n∑
j=1

ωiωj

{
e−|Yi−Yj |/σh

(
σh + |Yi − Yj |

φ2
+

2(λ+ ν)

νλφψ

)

+e−|Yi−Yj |/σz
(
σz + |Yi − Yj |

ψ2
+

2(ν − λ)

νλφψ

)}
+

1

4n2σ2
h

n∑
i=1

n∑
j=1

(σh + |Yi − Yj |)e−|Yi−Yj |/σh

−
1

4n2σ2
hσ

2
z

n∑
i=1

ωi

n∑
j=1

{
e−|Yi−Yj |/σh

(
σh + |Yi − Yj |

φ
+
λ+ ν

νλψ

)
+
ν − λ
νλψ

e−|Yi−Yj |/σz
}

(2.4)

where q(z) = (2σz)
−1e−|z|/σz , ĝ(y) = 1

n

∑n
i=1Kh(y − Yi) and λ = 1/σz + 1/σh, ν =

1/σz − 1/σh, 1/φ = 1/λ+ 1/ν, 1/ψ = 1/λ− 1/ν.
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Thus optimizing Q(ω) in (2.4) under the constraints that the weights are non-negative
and sum to n leads to a quadratic programming problem:

minimizeω
1

2
ω′Hω + f ′ω,

subject to

n∑
i=1

ωi = n, ωi ≥ 0, i = 1, 2, · · · , n.

Then, we obtain

f̂ω̂(x) =
1

n

n∑
i=1

ω̂iKh(x− Yi), where ω̂ = arg min
ω
Q(ω).

3. Simulation and discussion

In this section we compare the performance of three different deconvolution density esti-
mators when measurement errors are double exponential: weighted kernel density estimators,
classical kernel density estimators, and support vector kernel density estimators based on
the support vector regression method. Target distributions are selected from distribution
functions used in Hazelton and Turlach (2009). The classical kernel density estimator with
the Gaussian kernel (Pensky and Vidakovic, 1999) is evaluated as

f̂(x) =
1

2πn

n∑
j=1

∫ ∞
−∞

eiξ(x−Yj)K̃(σhξ)/q̃(ξ) dξ

=
1

n
√

2πσh

n∑
j=1

e

−0.5

x− Yj
σh


2 1−

σ2
Z

σ2
h

(x− Yj
σh

)2

− 1

 (3.1)

where K̃(σhξ) = e−0.5σ
2
hξ

2

and q(z) = (2σz)
−1e−|z|/σz .

The support vector kernel density estimator with the Gaussian kernel (Mukherjee and
Vapnik, 1999; Lee, 2010) is evaluated as

f̂(x) =
1

2π

∫ ∞
−∞

n∑
j=1

ωjK̃h(Yj , ξ)e
iξx/q̃(ξ) dξ

=

n∑
j=1

ωj√
2πσh

e−(x−Yj)
2/2σ2

h + σ2
z

n∑
j=1

ωj√
2πσ3

h

e−(x−Yj)
2/2σ2

h

− σ2
z

n∑
j=1

ωj√
2πσ5

h

(x− Yj)2e−(x−Yj)
2/2σ2

h (3.2)

where the unknown weight vector ω will be estimated by solving the following quadratic
programming problem and applying the equation ω = Γ−1h R(α− α∗) :
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minimize
1

2
(α− α∗)tRtΓ−1h R(α− α∗)−

n∑
i=1

Yi(αi − α∗i ) + ε

n∑
i=1

(αi + α∗i )

subject to 0 ≤ α∗i , αi ≤ C, i = 1, · · · , n

where Γh = [Kh(Yi, Yj)]n×n, Kh(Yi, Yj) = (
√

2πσh)−1e−(Yi−Yj)
2/2σ2

h , Rt = [rij ]n×n, rij =∫ Yi
−∞Kh(Yj , y)dy.

The following Figures 3.1-3.3 show plots of classical kernel density estimates (3.1), weighted
kernel density estimates with the double exponential kernel (2.3) and support vector ker-
nel density estimates (3.2) when 100 points are randomly generated respectively from a
target distribution f(x) and a noise distribution, double exponential distribution q(z) with
mean zero. Each figure is selected among 30 randomly generated data sets. We simulated
when the measurement error variance is set at low (= var(Z)/var(X) = 0.1), moderate
(= var(Z)/var(X) = 0.25), and high levels (= var(Z)/var(X) = 0.5) as shown in Hazelton
and Turlach (2009). The target distribution f(x) is shown in bold line.

In kernel density estimation the choice of kernel is not crucial, but the choice of bandwidth
is very important. In the following figures, a rule of thumb bandwidth, σh = (5σ4

Z/n)1/9,
is used as an initial value (Fan, 1991; Wang and Wang, 2011). MATLAB 6.5 is used in the
simulation and Gunn’s program (Gunn, 1998) is used for the support vector kernel density
estimates,

Figure 3.1 presents the simulation study when the target distribution is the standard nor-
mal probability distribution f(x). The parameters (= σh) of classical and kernel density
estimates corresponding to variance ratios of 0.1, 0.25 and 0.5 are 0.6, 0.6 and 0.75 respec-
tively. The parameters (= σh) of the support vector kernel density estimates corresponding
to variance ratios of 0.1, 0.25 and 0.5 are 0.9, 0.95, 0.95 respectively and ε = 0.05, C = ∞
are used.

(a) var(Z)/var(X)=0.1 (b) var(Z)/var(X)=0.25 (c) var(Z)/var(X)=0.5

Figure 3.1 The simulation study when target density f(x) is N(0, 1)



A note on nonparametric density deconvolution by weighted kernel estimators 957

Figure 3.2 presents the simulation study when the target distribution is the symmetric bi-
modal density 0.5N(−2.5, 1)+0.5N(2.5, 1). The parameters (= σh) of classical and weighted
kernel density estimates corresponding to variance ratios of 0.1 and 0.25 are 0.75, 1.1 respec-
tively. The parameters (= σh) of the support vector kernel density estimates corresponding
to variance ratios of 0.1 and 0.25 is 1.05, 1.1 respectively and ε = 0.05, C =∞ are used.

(a) var(Z)/var(X)=0.1 (b) var(Z)/var(X)=0.25

Figure 3.2 The simulation study when target density f(x) is 0.5N(−2.5, 1) + 0.5N(2.5, 1)

Figure 3.3 presents the simulation study when the target distribution is the kurtotic density
2/3N(0, 1) + 1/3N(0, 0.04). The parameter (= σh) of classical and weighted kernel density
estimates corresponding to variance ratio of 0.25 is 0.5. The parameters (σh, ε, C) of the
support vector kernel density estimate corresponding to variance ratios of 0.25 are 0.9, 0.05
and infinity respectively.

Figure 3.3 The simulation study when target density f(x) is 2/3N(0, 1) + 1/3N(0, 0.04) and
var(Z)/var(X)=0.25
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Figure 3.4 The simulation study when target density f(x) is N(0, 1) and var(Z)/var(X)=0.25

Figure 3.4 shows plots of a classical kernel density estimate (3.1) and a weighted kernel
density estimate with the Gaussian kernel (2.1) when 40 points are randomly generated.
The parameter (= σh) of classical and weighted kernel density estimate corresponding to
variance ratios of 0.25 is 0.6. The numerical results for the weighted density estimator with
the Gaussian kernel were obtained by using quadprog in the MATLAB package.

As the illustrated figures suggest in the simulation, the weighted density estimates with
the double exponential kernel show very similar plots to the classical kernel density esti-
mates even though the shape is less satisfactory than the classical kernel density estimates.
The weighted density estimate with the Gaussian kernel show very similar figure to the
classical kernel density estimate in Figure 3.4. The classical kernel density estimates show
better performance than the support vector kernel density estimates in the mixed normal
distributions. However, in the simulation, the support vector kernel density estimates some-
times showed good performance when the classical kernel density estimates face difficulties
to figure out the true density. The support vector kernel density estimator is very attractive
in the sense that some coefficients are very close to zero.

4. Concluding remarks

In this paper three different deconvolution density estimators were introduced when the
sample observations are contaminated by double exponentially distributed errors. The sim-
ulation study conducted is limited. However, it indicates that the classical kernel density
estimator with the Gaussian kernel show better performance than the weighted density es-
timator with the double exponential kernel. It is suggested by Figure 3.4 that the double
exponential kernel seems to have affected the shape of the estimates more than we expected
in the simulation. Thus we speculate that the weighted kernel density estimates with Gaus-
sian kernel will improve this problem. However, in this paper a simulation study for the
weighted density estimate with Gaussian kernel is very limited because numerical instability
and computational time trouble for sample sizes above n = 50 (running on a 3.2 GHz PC
with 3.4 GB RAM) are faced in practical implementation of calculation of integrals and op-
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timization. We speculate that they will be computed relatively quickly and stably through
more adequate numerical procedures.
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