DOI QR코드

DOI QR Code

Estimation of Bathymetry Changes using Hyperspectral Measurements -Focused on Haeundae beach-

초미세분광 측정치를 이용한 해저지형 변화산정 - 해운대를 중심으로 -

  • Received : 2013.11.18
  • Accepted : 2014.04.15
  • Published : 2014.08.01

Abstract

Shallow water depths were estimated using Compact Airborne Spectrographic Imager (CASI)-1500 and mapped to analyze the bottom bathymetry changes due to the rip currents in Haeundae beach, South Korea for the first time. The depths were estimated empirically using the maximum reflectances from 420nm to 597nm wavelength of CASI and 47 in situ water depth measurements, which were compared with ground-truth bathymetry measurements. The comparisons showed that the RMSE was 1.1m with a correlation coefficient of 0.76. In addition, CASI imagery showed remarkably detailed bottom features, especially those resulting from the rip currents within the beach. Two different channels carved by the rip current were analyzed and characterized with respect to the width and slope compared to surrounding regions. While the west side of the channel showed a wide and gentle slope, the east side of the channel showed a narrow and steep slope. The estimated bathymetry map revealed that the uneven offshore bottom features were related to the transport and accumulation of sediments by the rip current, which reaches hundreds of meters offshore. Accordingly, the accumulated sediments were estimated by adding topography changes compared to the depths of the non-rip current regions. The sediments were accumulated in off channels as much as almost twice the amount of annual sand supplements along the Haeundae beach.

고해상도의 원격탐사 영상을 이용하여, 이안류에 의한 해저지형변화를 분석하기 위한 연구가 해운대에서 처음으로 수행되었다. 고해상도의 해저지형 정보를 위하여, Compact Airborne Spectrographic Imager (CASI)-1500 센서로 관측한 반사도와 수심 실측자료가 이용되었다. 구체적으로, 반사값의 최대값을 CASI-1500의 420nm 부터 597nm 파장대에서 구하고, 동시에 지상 검증된 47지정의 해저지형 측정값을 비교하여 경험적으로 산정하였다. 비교결과, 상관계수 0.76이며, RMSE는 1.1m이었다. CASI초미세분광센서의 공간해상력은 바닥의 지형도를 놀라울만큼 상세하게, 특히 해변에 포함되어 있는 이안류에 따른 결과를 세밀하게 표출하였다. 이안류에 의하여 깎여진 두 개의 수로는 그 폭과 경사면에서 주변지역에 비해 뚜렷한 특징이 도출되었다. 왼쪽의 수로가 넓은 폭과 완만한 경사를 보여주는 반면, 오른 쪽의 수로는 약간 좁은 폭과 왼쪽에 비해 약간 급한 경사를 보여주었다. 수치적으로 계산된 해저지형도는 평탄하지 않은 외해의 바닥모양이 이안류에 의한 표류사의 이동과 퇴적에 관련되어 있고, 그것은 수백 미터의 외해에 이른다는 것을 알 수 있었다. 따라서 퇴적된 표류사는 이안류가 없는 지역의 수심에 비하여 지형학적인 변화가 증가되는 것으로 평가되었다. 표류사는 수로의 밖에 해변을 따라 매년 양빈하는 양의 2배가량 됨을 알 수 있었다.

Keywords

References

  1. Bowen, A. J. (1969). "Rip currents: 1. Theoretical Investigations." J. Geophys. Res, Vol. 74, No. 23, pp. 5467-5478. https://doi.org/10.1029/JC074i023p05467
  2. Brando, V. E., Anstee J. M., Wetle, M., Dekker, A. G., Phinn, S. R. and Roelfsema, C. (2009). "A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data." Remote Sensing of Environment, Vol. 113, No. 4, pp. 755-770. https://doi.org/10.1016/j.rse.2008.12.003
  3. Chen, Q., Dalrymple, R. A., Kirby, J. T., Kennedy, A. B. and Haller, M. C. (1999). "Boussinesq modeling of a rip current system."J. Geophys. Res, Vol. 104, No. C9, pp. 20617-20637. https://doi.org/10.1029/1999JC900154
  4. Deng, Z., Ji, M. and Zhang, Z. (2008). "Mapping bathymetry from multi-source remote sensing images: A Case Study in the Beilun Estuary, Guangaxi, China, The International Archives of the Photogrammetry."Remote Sensing and Spatial Information Sciences, Vol. XXXVII. Part. B8.
  5. Feng, L., Hu, C., Chen, X., Li, R., Tian, L. and Murch, B. (2011). "MODIS observations of the bottom topography and its inter-annual variability of Poyang Lake."Remote Sensing of Environment, Vol. 115, No. 10, pp. 2729-2741. https://doi.org/10.1016/j.rse.2011.06.013
  6. Feurer, D., Bailly, J. S., Puech, C., Le Coarer, Y. and Viau, A. A. (2008). "Very-high-resolution mapping of river-immersed topography by remote sensing."Progress in Physical Geography, Vol. 32, No. 5, pp. 403-419. https://doi.org/10.1177/0309133308096030
  7. Flener, C., Lotsari, E., Alho, P. and Kayhko, J. (2012). "Comparison of empirical and theoretical remote sensing based bathymetry models in river environments."River Research and Applications, Vol. 28, No. 1, pp. 118-133. https://doi.org/10.1002/rra.1441
  8. Gagnon, P., Ripley, H. T. and Jones, W. (2004). "Synoptic mapping of shallow, marine, coastal communities using airborne hyper spectral sensors: Technical Aspects, Operational Approaches, and Proven Applications."Oral Presentation PORSEC 2004, Conception, Chile, Vol. 68, No. 2, pp. 209-212.
  9. Haller, M. C. Dalrymple, R. A. and Svendsen, I. A. (1997). "Experimental modeling of a rip current system."Reprinted from WAVES'97: Proceedings of the Third International Symposium on Ocean Wave Measurement and Analysis Virginia Beach VA-Nov. 3-7.
  10. Haller, M. C. (1999). Rip current dynamics and nearshore circulation, Diss. University of Delaware.
  11. Hamm, L. (1992). "Direction nearshore wave propagation over a rip channel: An Experiment."Proc. of the 23rd Intl. Conf. Coast. Engineering. pp. 226-239.
  12. Hohenthal, J., Alho, P., Hyyppa, J. and Hyyppa, H. (2011). "Laser scanning applications in fluvial studies."Progress in Physical Geography, Vol. 35, No. 6, pp. 782-809. https://doi.org/10.1177/0309133311414605
  13. Hong, H. J., Choi, C. U., Choi, H. and Yoon, D. J. (2006). "Detection and analysis of post-typhoon three-dimensional changes in Haeundae beach topography using GPS and GIS technology."J. of the Korean Association of Geographic Information Studies, Vol. 9, No. 3, pp. 82-92.
  14. Hsu, S. M. and Burke, H. H. K. (2003). "Multisensor fusion with hyperspectral imaging data: Detection and Classification."Lincoln Laboratory Journal, Vol. 14, No. 3, pp. 145-159.
  15. Jerlov, N. G. (1976). Marine optics, Elsevier Scientific, Amsterdam.
  16. Kim, I.H., Kim, I.C. and Lee, J. L. (2011). "Rip current prediction system combined with a morphological change model."Journal of Coastal Research, SI64 (Proceedings of the 11th International Coastal Symposium), No. 64, pp. 547-551.
  17. Lee, J. Y. and Lee, J. L. (2011). "Verification of the rip currents predictive model using the tube image detecting techniques." Journal of Coastal Research, SI64 (Proceedings of the 11th International Coastal Symposium), pp. 917-921 (in Korean).
  18. Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G. and Patch, J. S. (1999). "Hyperspectral remote sensing for shallow waters: 2. Deriving Bottom Depths and Water Properties by Optimization." Appl. Opt., Vol. 38, No. 18, pp. 3834-3843.
  19. Li, W., Hu, P., Xiao, D. and Liu, C. (2004). "The application of the multibeam sounding to the marine engineering exploration." Geophysical & Geochemical Exploration, Vol. 28, No. 4, pp. 373-376.
  20. Linda, C., Andrea, M. and Marco, C. (2011). "Approaching bathymetry estimation from high resolution multispectral satellite images using a neuro-fuzzy technique."Journal of Applied Remote Sensing, Vol. 5, No. 1, p. 053515. https://doi.org/10.1117/1.3569125
  21. Liu, Y., Islam, M. A. and Gao, J. (2003). "Quantification of shallow water quality parameters by means of remote sensing."Progress in Physical Geography, Vol. 27, No. 1, pp. 24-43. https://doi.org/10.1191/0309133303pp357ra
  22. Liu, Z. and Zhou, Y. (2011). "Direct inversion of shallow-water bathymetry from EO-1 hyperspectral remote sensing data." Chinese Optics Letters, Vol. 9, No. 6, p. 060102. https://doi.org/10.3788/COL201109.060102
  23. Lyzenga, D. R. (1978). "Passive remote sensing techniques for mapping water depth and bottom features."Appl. Opt, Vol. 19, No. 3, pp. 379-383.
  24. Lyzenga, D. R., Malinas, N. R. and Tanis, F. J. (2006). "Multispectral bathymetry using a simple physically based algorithm."IEEE Transactions on Geosciences and Remote Sensing, Vol. 44, No. 8, pp. 2251-2259. https://doi.org/10.1109/TGRS.2006.872909
  25. Lyzenga, D. R. (1981). "Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data."Int. J. Remote Sens, Vol. 2, No. 1, pp. 71-82. https://doi.org/10.1080/01431168108948342
  26. Maritorena, S., Morel, A. and Gentili, B. (1994). "Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom Albedo."Limnol. Oceanogr, Vol. 39, No. 7, pp. 1689-1703. https://doi.org/10.4319/lo.1994.39.7.1689
  27. McIntyre, M. L., Naar, D. F., Carder, K. L., Donahue, B. T. and Mallinson, D. J. (2006). "Coastal bathymetry from hyperspectral remote sensing data: Comparisons with High Resolution Multibeam Bathymetry."Marine Geophysical Researches, Vol. 27, No. 2, pp. 129-136. https://doi.org/10.1007/s11001-005-0266-y
  28. McKenzie, P. (1958). "Rip-current systems."J. Geol. Vol. 66, No. 2, pp. 103-113. https://doi.org/10.1086/626489
  29. Muslim, A. M. and Foody, G. M. (2008). "DEM and bathymetry estimation for mapping a tide-coordinated shoreline from fine spatial resolution satellite sensor imagery."International Journal of Remote Sensing, Vol. 29, No. 15, pp. 4515-4536. https://doi.org/10.1080/01431160802029685
  30. Paredes, J. M. and Spero, R. E. (1983). "Water depth mapping from passive remote sensing data under a generalized ratio assumption." Appl. Opt., Vol. 22, No. 9, pp. 1134-1135. https://doi.org/10.1364/AO.22.001134
  31. Philpot, W. D. (1989). "Bathymetric mapping with passive multispectral imagery."Appl. Opt., Vol. 28, No. 8, pp. 1569-1578. https://doi.org/10.1364/AO.28.001569
  32. Polcyn, F. C. and Sattinger, I. J. (1969). "Water depth determination using remote sensing techniques."Proceedings of the Sixth lnternational Symposium on Remote Sensing of the Environment, held in Ann Arbor, Michigan, 13-16 October 1969 (Ann Arbor, MI: ERIM). pp. 1017-1028.
  33. Sandidge, J. C. and Holyer, R. J. (1998). "Coastal bathymetry from hyperspectral observations of water radiance."Remote Sens. Environ., Vol. 65, No. 3, pp. 341-352. https://doi.org/10.1016/S0034-4257(98)00043-1
  34. Sasaki, T. O. and Horikawa, K. (1979). "Observations of nearshore current and edge waves."Paper Presented at 16th Coastal Engineering Conference, Am. Soc. of Civ. Eng., Hamburg, Vol. 49, No. 4, pp. 791-809 (in Germany).
  35. Shepard, F. P., Emery, K. O. and La Fond, E. C. (1941). "Rip currents: A Process of Geological Importance."The Journal of Geology, Vol. 49, No. 4, pp. 337-369. https://doi.org/10.1086/624971
  36. Smith, J. A. and Largier, J. L. (1995). "Observations of nearshore circulation: Rip currents."The Journal of Geology, Vol. 100, No. C6, pp. 10967-10975.
  37. Song, D. S. and Bae, H. K. (2011). "Observation and forecasting of rip current generation in haeundae beach, Korea plan and experiment." Journal of Coastal Research, SI64 (Proceedings of the 11th International Coastal Symposium), Vol. 1, pp. 946-950 (in Korean).
  38. Stumpf, R. P., Holderied, K. and Sinclair, M. (2003). "Determination of water depth with high-resolution satellite imagery over variable bottom types."Limnology and Oceanography, Vol. 48.1, No. 2, pp. 547-556.
  39. Yu, J. and Slinn, D. N. (2003). "Effects of wave-current interaction on rip currents."Journal of Geophysical Research: Oceans (1978-2012). Vol. 108, No. C3, p. 33.