DOI QR코드

DOI QR Code

광산폐석의 유변학적 특성과 토석류 흐름특성 분석

Rheological Characteristics and Debris Flow Simulation of Waste Materials

  • 정승원 (한국지질자원연구원 지구환경연구본부)
  • 투고 : 2014.02.12
  • 심사 : 2014.06.13
  • 발행 : 2014.08.01

초록

휴 폐광산지역은 복합지질재해지역으로 집중호우에 의해 토사재해와 산성광산배수를 발생시킨다. 본 연구는 폐석적치장 전반에 걸쳐 토사재해가 관측된 임기광산에 대해 지반공학적 유변학적 시험을 수행하고 얻어진 시험결과를 토대로 1-D 토석류 수치해석을 수행함으로써 토석류의 확산성을 조사하였다. 모래와 자갈로 구성된 광산폐석 시료의 유변학적 특성을 조사하기 위해 베인관입형 레오미터(Vane-penetrated rheometer)를 사용하였으며, 전단응력 제어를 통한 전단응력(${\tau}$)-전단속도(${\dot{\gamma}}$)와 점도(${\eta}$)-전단속도(${\dot{\gamma}}$) 간의 상관관계를 얻었다. 또한 광산폐석 시료에 대해 잘 알려진 유변학적 모델들(Bingham, Herschel-Bulkley, Power-law, bilinear 및 Papanastasiou 모델)을 적용함으로써 수치해석에 필요한 유변학적 매개변수(항복응력과 소성점도)를 결정하였다. 실험결과에 따르면, 체적농도에 무관하게 전형적인 전단담화(shear thinning) 거동이 관측되었으며, 함수비가 증가할수록 Bingham 유체처럼 거동하는 것으로 나타났다. 또한 사용된 모든 유변학적 모델들은 파괴 후 거동에 적합한 모델들로 밝혀졌다. 토석류 흐름특성을 조사하기 위해 실험결과를 토대로 토석류 크기(5 m, 10 m 및 15 m)와 항복응력(100 Pa, 200 Pa, 300 Pa 및 500 Pa)을 선정하여 1-D BING을 통해 수치해석을 수행하였다. 그 결과, 토석류 이동거리와 이동속도는 항복응력의 크기에 반비례한 것으로 나타났으며, 토석류 항복응력이 500 Pa 이하인 경우 대부분의 토사는 계곡부까지 흘러갈 수 있는 것으로 나타났다. 따라서 집중호우 기간에 산악지역에 방치된 광산폐석은 토사재해에 취약하고 2차적으로 인근 수계로 유입되어 환경적 문제를 야기시킬 수 있는 것으로 나타났다.

Abandoned mines often cause environmental problems, such as alteration of landscape, metal contamination, and landslides due to a heavy rainfall. Geotechnical and rheological tests were performed on waste materials corrected from Imgi waste rock dump, located in Busan Metropolitan City. Debris flow mobility was examined with the help of 1-D BING model which was often simulated in both subaerial and subaqueous environments. To determine flow curve, we used a vane-penetrated rheometer. The shear stress (${\tau}$)-shear rate (${\dot{\gamma}}$) and viscosity(${\eta}$)-shear rate (${\dot{\gamma}}$) relationships were plotted using a shear stress control mode. Well-known rheological models, such as Bingham, bilinear, Herschel-Bulkley, Power-law, and Papanastasiou concepts, were compared to the rheological data. From the test results, we found that the tested waste materials exhibited a typical shear shinning behavior in ${\tau}$-${\dot{\gamma}}$ and and ${\eta}$-${\dot{\gamma}}$ plots, but the Bingham behavior is often observed when the water contents increased. The test results show that experimental data are in good agreement with rheological models in the post-failure stage during shearing. Based on the rheological properties (i.e., Bingham yield stress and viscosity as a function of the volumetric concentration of sediment) of waste materials, initial flowing shape (5 m, 10 m, and 15 m) and yield stress (100 Pa, 200 Pa, 300 Pa, and 500 Pa) were input to simulate the debris flow motion. As a result, the runout distance and front velocity of debris flow are in inverse propositional to yield stress. In particular, when the yield stress is less than 500 Pa, most of failed masses can flow into the stream, resulting in a water contamination.

키워드

참고문헌

  1. Beniello, M. A., Calligaris, C., Lapasin, R. and Zini, L. (2010). "Rheological investigation and simulation of a debris flow event in the Fella watershed."Natural Hazards and Earth System Sciences, Vol. 10, pp. 989-997. https://doi.org/10.5194/nhess-10-989-2010
  2. Cheong, Y. W., Ji, S. W. and Yim, G. J. (2004). "The acid rock drainage and hydraulic characteristics of the waste rock dump." Journal of the Korean Geo-Environmental Society, Vol. 5, No. 4, pp. 13-24 (in Korean).
  3. Cheong, Y. W., Jo, Y. D., Lee, H. S., Yim, G. J., Ji, S. W. and Yang, J. E. (2007). "An experimental study with lysimeter for the vegetating on mine waste dump."Journal of the Korean Society for Geosystem Engineering, Vol. 44, No. 5, pp. 411-417 (in Korean).
  4. Coussot, P. (1994). "Steady, laminar, flow of concentrated mud suspensions in open channel."Journal of Hydraulic Research, Vol. 32, No. 4, pp. 535-559. https://doi.org/10.1080/00221686.1994.9728354
  5. Coussot, P. and Piau, J. M. (1994). "On the behavior of fine mud suspensions."Rheologica Acta, Vol. 33, pp. 175-184. https://doi.org/10.1007/BF00437302
  6. Coussot, P., Nguyen, G. D., Huynh, H. T. and Bonn, D. (2002). "Viscosity bifurcation in thixotropic, yielding fluids."Journal of Rheology, Vol. 46, pp. 573-589. https://doi.org/10.1122/1.1459447
  7. Hungr, O. (1995). "A model for the runout analysis of rapid flow slides, debris flows, and avalanches."Canadian Geotechnical Journal, Vol. 32, pp. 610-623. https://doi.org/10.1139/t95-063
  8. Imran, J., Parker, G., Locat, J. and Lee, H. (2001). "1D numerical model of muddy subaqueous and subaerial debris flows."Journal of Hydraulic Engineering, Vol. 127, pp. 959-968. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(959)
  9. Jeong, S. W. (2006). Influence of physico-chemical characteristics of fine-grained sediments on their rheological behavior, PhD Thesis, Laval University, Quebec, Canada.
  10. Jeong, S. W. (2010). "Grain size dependent rheology on the mobility of debris flows."Geosciences Journal, Vol. 14, pp. 359-369. https://doi.org/10.1007/s12303-010-0036-y
  11. Jeong, S. W. (2011). "Rheological models for describing fine-laden debris flows: Grain-Size Effect."Journal of the Korean Geotechnical Society, Vol. 6, pp. 49-61 (in Korean). https://doi.org/10.7843/kgs.2011.27.6.049
  12. Jeong, S. W., Leroueil, S. and Locat, J. (2009). "Applicability of power law for describing the rheology of soils of different origins and characteristics."Canadian Geotechnical Journal, Vol. 46, pp. 1011-1023. https://doi.org/10.1139/T09-031
  13. Jeong, S. W., Locat, J., Leroueil, S. and Malet, J. P. (2010). "Rheological properties of fine-grained sediments: The Roles of Texture and Mineralogy."Canadian Geotechnical Journal, Vol. 47, pp. 1085-1100. https://doi.org/10.1139/T10-012
  14. Ji, S. W. and Cheong, Y. W. (2005). "Experiment of reactive media selection for the permeable reactive barrier treating groundwater contaminated by acid mine drainage."Economic and Environmental Geology, Vol. 38, No. 3, pp. 237-245 (in Korean).
  15. Jiang, L. and Leblond, P. H. (1992). "The coupling of a submarine slide and the surface waves which it generates."Journal of Geophysical Research, Vol. 97, pp. 12731-12744. https://doi.org/10.1029/92JC00912
  16. Jiang, L. and Leblond, P. H. (1993). "Numerical modeling of an underwater Bingham plastic mudslide and the waves which it generates."Journal of Geophysical Research, Vol. 98, No. C6, pp. 10303-10317. https://doi.org/10.1029/93JC00393
  17. Korea Institute of Geoscience and Mineral Resources (KIGAM) (2012). Development of practical technologies for countermeasures for hazards in steep slope and abandoned mine areas, Ministry of Knowledge Economy, GP2012-022-2012(1), p. 375 (in Korean).
  18. Korea Institute of Geoscience and Mineral Resources (KIGAM) (2013). Development of practical technologies for countermeasures for hazards in steep slope and abandoned mine areas, Ministry of Science, ICT and Future Planning, GP2012-022-2013(2), p. 359 (in Korean).
  19. Leroueil, S., Tavenas F. and LeBihan, J. P. (1983). "Proprietes caracteristiques des argiles de l'est du Canada."Canadian Geotechnical Journal, Vol. 20, pp. 681-705. https://doi.org/10.1139/t83-076
  20. Locat, J. (1997). "Normalized rheological behaviour of fine muds and their flow properties in a pseudoplastic regime."Proc. 1st Int. Conf. on Debris-Flow Hazards Mitigation, San Francisco, ASCE, New York, pp. 260-269.
  21. Locat, J. and Demers, D. (1988). "Viscosity, yield stress, remoulded strength, and liquidity index relationships for sensitive clays." Canadian Geotechnical Journal, Vol. 25, pp. 709-806.
  22. Locat, J. and Lee H. J. (2009). "Submarine mass movements and their consequences: An Overview."Sassa, K. and Canuti, P. (eds.), Landslides?Disaster Risk Reduction, Springer-Verlag, (ch. 6), pp. 115-142.
  23. Locat, J. and Lee, H. J. (2002). "Submarine landslides: Advances and Challenges."Canadian Geotechnical Journal, Vol. 39, pp. 193-212. https://doi.org/10.1139/t01-089
  24. Locat, J., Lee, H. J., Locat, P. and Imran, J. (2004). "Numerical analysis of the mobility of the Palos Verdes debris avalanche, California, and its implication for the generation of tsunamis." Marine Geology, Vol. 203, pp. 269-280. https://doi.org/10.1016/S0025-3227(03)00310-4
  25. Papanastasiou, T. C. (1987). "Flows of materials with yield." Journal of Rheology, Vol. 31, pp. 385-404. https://doi.org/10.1122/1.549926
  26. Quan Luna, B. Blahut, J., van Westen, C. J., Sterlacchini, S., van Asch, T. W. J. and Akbas, S. O. (2011). "The application of numerical debris flow modeling for the generation of physical vulnerability curves."Natural Hazards and Earth System Sciences, Vol. 11, pp. 2047-2060. https://doi.org/10.5194/nhess-11-2047-2011
  27. Schatzmann, M., Bezzola, G. R., Minor, H. E., Windhab, E. J. and Fischer, P. (2009). "Rheometry for large-particulated fluids: Analysis of the Ball Measuring System and Comparison to Debris Flow Rheometry."Rheologica Acta, Vol. 48, pp. 715-753. https://doi.org/10.1007/s00397-009-0364-x
  28. Scotto di Santolo, A. and Evangelista, A. (2009). "Some observations on the prediction of the dynamic parameters of debris flows in pyroclastic deposits in the Campania region of Italy."Natural Hazards, Vol. 50, pp. 605-622. https://doi.org/10.1007/s11069-008-9334-3
  29. Scotto di Santolo, A., Pellegrino, A. M. and Evangelista, A. (2010). "Experimental study on the rheological behaviour of debris flow."Natural Hazards and Earth System Sciences , Vol. 10, pp. 2507-2514. https://doi.org/10.5194/nhess-10-2507-2010
  30. Scotto di Santolo, A., Pellegrino, A. M., Evangelista, A. and Coussot, P. (2012). "Rheological behaviour of reconstituted pyroclastic debris flow."Geotechnique, Vol. 62, No. 1, pp. 19-27. https://doi.org/10.1680/geot.10.P.005
  31. Sosio, R. and Crosta, G. B. (2009). "Rheology of concentrated granular suspensions and possible implications for debris flow modeling."Water Resources Research, Vol. 35, p. W03412.
  32. Torrance, J. K. (1987). "Shear resistance of remoulded soils by viscometric and fall-cone methods: A Comparison for the Canadian Sensitive Marine Clays."Canadian Geotechnical Journal, Vol. 24, pp. 318-322. https://doi.org/10.1139/t87-037
  33. Wu, Y. H., Liu, K. F. and Chen, Y. C. (2013). "Comparison between Flo-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study."Journal of Mountain Science, Vol. 10, No. 2, pp. 293-304. https://doi.org/10.1007/s11629-013-2511-1
  34. Youm, S. J., Yun, S. T., Kim, J. H. and Park, M. E. (2002). "Neutralization of acid rock drainage from the Dongrae pyrophyllite deposit: A Study on Behavior of Heavy Metals."Korean Society of Soil and Groundwater Environment, Vol. 7. No. 4, pp. 68-76 (in Korean).

피인용 문헌

  1. Analysis of Characteristics of some of Forest Environmental Factors on Debris Flow Occurrence vol.104, pp.2, 2015, https://doi.org/10.14578/jkfs.2015.104.2.213
  2. Rheological Characteristics of Tailings Paste for Stope Backfill vol.54, pp.1, 2017, https://doi.org/10.12972/ksmer.2017.54.1.039