DOI QR코드

DOI QR Code

Sustainable Design Method of Reinforced Concrete Beam Using Embodied Energy Optimization Technique

내재에너지 최적화를 통한 철근 콘크리트 보의 지속가능 설계법

  • Received : 2014.04.10
  • Accepted : 2014.05.30
  • Published : 2014.08.01

Abstract

This study presents a sustainable design method that optimizes the embodied energy of concrete beam based on the concept of sustainable development that effectively utilizes natural resource and energy within the range that our succeeding generation can afford to utilize. In order to get the flexural strength carrying the ultimate load, concrete beam sections are designed by optimization that consists of the embodied energy as a objective function and the requirements of design code as constrained conditions. The sustainable design can be used to minimize the embodied energy consumed in material production, construction, operation, demolition of the infrastructure. As a result of comparison of the cost and the embodied energy optimizations based on practical beam sections, it is shown that 20% embodied energy saving and 35% $CO_2$ emission saving are achieved by sacrificing 10% cost increase. The sustainable design method provides a new effective methodology that manages the strength design concept based on cost minimization together with economic feasibility and sustainability. In addition, the method is expected to be applied to more various structural design practices.

본 연구에서는 자원과 에너지를 후손들까지 이용 가능하도록 확보하며 개발하는 지속가능개발 개념을 바탕으로 콘크리트구조기준을 만족시키면서 철근콘크리트 보의 내재에너지와 이산화탄소 배출량을 최적화 할 수 있는 지속가능 설계법을 제시한다. 극한하중을 견딜 수 있는 휨강도를 얻기 위한 콘크리트구조기준의 요구조건을 구속조건으로 설정하고 내재에너지와 이산화탄소 배출량을 목적함수로 하는 최적화 단면설계를 수행했다. 지속가능 설계법은 건설재료의 생산, 구조물의 건설 관리 해체시 소비되는 내재에너지와 이산화탄소 배출량을 최소화할 수 있는 방안으로 활용될 수 있다. 실제 철근콘크리트 보를 대상으로 내재에너지와 이산화탄소 배출량을 최적화하여 얻은 단면과 공사비를 최적화하여 얻은 단면을 비교한 결과, 약 10% 정도의 비용증가를 통해 내재에너지와 이산화탄소 배출량을 각각 20% 정도와 35% 정도까지 감소할 수 있음을 보였다. 결과적으로 지속가능 설계법은 기존의 공사비 최소화를 근간으로 하는 강도설계법을 유지하면서 경제성과 지속가능성을 동시에 확보할 수 있는 설계수단을 제공해주며, 추후 보다 다양한 구조물의 설계로 확장될 수 있을 것으로 기대된다.

Keywords

References

  1. ACI (2008). Building code requirements for structural concrete (ACI 318-08M) and commentary, American Concrete Institute, Farmington Hills, MI.
  2. Ashley, E. and Lemay, L. (2008). "Concrete's contribution to sustainable development."Journal of Green Building, College Publishing, Vol. 3, No. 4, pp. 37-49. https://doi.org/10.3992/jgb.3.4.37
  3. CBPR (2003). Table of embodied energy coefficients, Centre for Building Performance Research, Wellington (in New Zealand).
  4. CTBUH (2009). "Tall building and embodied energy."Council of Tall Building and Urban Habitat Journal III, pp. 50-51.
  5. Davidovits, J. (1993). "Geopolymer cements to minimize carbondioxide greenhouse warming."Ceramic Transactions, Wiley, Vol. 37, pp. 165-182.
  6. Gartner, E. (2004). "Industrially interesting approaches to 'low-$CO_{2}$' cements."Cement and Concrete Research, Elsevier, Vol. 34, No. 9, pp. 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021
  7. Goggins, J., Keane, T. and Kelly, A. (2010). "The assessment of embodied energy in typical reinforced concrete building structures in Ireland."Energy and Buildings, Elsevier, Vol. 42, No. 5, pp. 735-744. https://doi.org/10.1016/j.enbuild.2009.11.013
  8. Guerra, A., Newman, A. M. and Leyffer, S. (2011). "Concrete structure design using mixed integer nonlinear programming with complementarity constraints."SIAM Journal on Optimization, Vol. 21, No. 3, pp. 833-863. https://doi.org/10.1137/090778286
  9. IEA (2005). Key world energy statistics, International Energy Agency, Paris (in French).
  10. Kim, B. S. and Jang, W. S. (2013). "A study on comparing the $CO_{2}$ emission estimating result for construction equipment."Journal of the Korean Society of Civil Engineers, Vol. 33, No. 4, pp. 1675-1682. https://doi.org/10.12652/Ksce.2013.33.4.1675
  11. Korea Concrete Institute (KCI) (2012). Concrete structure design code (in Korean).
  12. MathWorks (2014). Matlab manual, Available at: https://www. mathworks.co.kr/help/pdf_doc/matlab/getstart.pdf
  13. Ministry of Land, Transport and Maritime Affairs (2011). Guideline of $CO_{2}$ emission evaluation for various structures (in Korean).
  14. Nara market (2013). Korea on-line e-procurement system, Available at: http://shopping.g2b.go.kr/
  15. OECD (2003). Environmentally sustainable buildings: Challenges and Policies, Organization for Economic Cooperation and Development, Paris (in French).
  16. Paya, I., Yepes, V., Gonzalez-Vidosa, F. and Hospitaler, A. (2008). "Multiobjective optimization of concrete frames by simulated annealing."Computer-Aided Civil and Infrastructure Engineering, Wiley, Vol. 23, No. 8, pp. 596-610. https://doi.org/10.1111/j.1467-8667.2008.00561.x
  17. Paya-Zaforteza, I., Yepes, V., Hospitaler, A. and Gonzalez-Vidosa, F. (2009). "$CO_{2}$ optimization of reinforced concrete frames by simulated annealing."Engineering Structures, Elsevier, Vol. 31, No. 7, pp. 1501-1508. https://doi.org/10.1016/j.engstruct.2009.02.034
  18. Sahab, M. G., Ashour, A. F. and Toropov, V. V. (2005). "Cost optimization of reinforced concrete flat slab buildings."Engineering Structures, Elsevier, Vol. 27, No. 1, pp. 313-322. https://doi.org/10.1016/j.engstruct.2004.10.002
  19. Sartori, I. and Hestnes, A. G. (2007). "Energy use in the life cycle of conventional and low energy buildings: A Review Article."Energy and Buildings, Elsevier, Vol. 39, No. 3, pp. 249-257. https://doi.org/10.1016/j.enbuild.2006.07.001
  20. Struble, L. and Godfrey, J. (2007). "How sustainable is concrete?" International Workshop on Sustainable Development and Concrete Technology, pp. 201-211.
  21. Thormark, C. (2002). "A low energy building in a life cycle-its embodied energy, energy need for operation, and recycling potential." Building and Environment, Elsevier, Vol. 37, No. 4, pp. 429-435. https://doi.org/10.1016/S0360-1323(01)00033-6
  22. UNDP (2007). Buildings and climate change: Status, Challenges and Opportunities, United Nations Development Program, New York, N.Y.
  23. Wang, W., Zmeureanu, R. and Rivard, H. (2005). "Applying multiobjective generic algorithms in green building design optimization." Building and Environment, Elsevier, Vol. 40, No. 11, pp. 1512-1525. https://doi.org/10.1016/j.buildenv.2004.11.017
  24. Yeo, D. and Gabbai, R. D. (2011). "Sustainable design of reinforced concrete structures through embodied energy optimization."Energy and Buildings, Elsevier, Vol. 43, No. 8, pp. 2028-2033. https://doi.org/10.1016/j.enbuild.2011.04.014
  25. Yohanis, Y. G. and Norton, B. (2002). "Life cycle operational and embodied energy for a generic single-story office building in the UK."Energy, Elsevier, Vol. 27, No. 1, pp. 77-92. https://doi.org/10.1016/S0360-5442(01)00061-5