DOI QR코드

DOI QR Code

Physicochemical Quality Properties of Mudflat Solar Salt and Roasted Salt

갯벌천일염과 구운 소금의 이화학적 품질 특성

  • Lee, Jung-Hee (Dept. of Food Engineering, Solar Salt & Halophyte R&D Center, Mokpo National University) ;
  • Kim, Hag-Lyeol (Dept. of Food Engineering, Solar Salt & Halophyte R&D Center, Mokpo National University) ;
  • Kim, In-Cheol (Dept. of Food Engineering, Solar Salt & Halophyte R&D Center, Mokpo National University)
  • 이정희 (국립목포대학교 공과대학 식품공학과/천일염 및 염생식물 산업화 사업단) ;
  • 김학렬 (국립목포대학교 공과대학 식품공학과/천일염 및 염생식물 산업화 사업단) ;
  • 김인철 (국립목포대학교 공과대학 식품공학과/천일염 및 염생식물 산업화 사업단)
  • Received : 2014.03.14
  • Accepted : 2014.04.14
  • Published : 2014.07.31

Abstract

The purpose of this study was carried out to investigate the cause of sulfur dioxide occurrence, general element composition, sulfur compounds, heavy metals, macro- & micro-minerals, and oxidation-reduction potential (ORP) following baking time course of RS (RS1, RS2, RS3, and RS4) and mudflat solar salts (MSS). Sulfur dioxide ($SO_2$) and sulfite ($SO{_3}^{2-}$) were not detected in MSS or RS. However, sulfate ($SO{_4}^{2-}$) content significantly decreased in RS (29,878.15~36,097.45 ppm) compared to that in MSS (35,601.65 ppm). ORP was 181.15 mV in MSS, and 58.55 mV in RS1. Moisture content was 9.34% in MSS and 0.00% in RS with increased NaCl (94.77~95.77%). Moisture and NaCl contents showed no significant difference in RS. Insoluble and sandy residues were higher in RS than in MSS, whereas Ca and K showed no significant difference. Mg and Cl contents were higher in RS than in MSS. Br level was higher in MSS (628.1 ppm) than in RS (512.72~586.62 ppm), but there was no significant difference in $NO_3$. Heavy metals (Pb, As, and Hg) were more abundant in RS than in MSS, but levels were still safe. These results suggest that MSS and RS may increase protection against from $SO_2$ and $SO{_3}^{2-}$.

소금의 이산화황 발생 원인을 구명하기 위하여 갯벌천일염 (MSS)과 구운 소금(RS)의 시간 경과(RS1, RS2, RS3 및 RS4)에 따른 일반성분, 중금속, 무기질 함량을 분석하고 이산화황 발생 및 각 소금의 환원력을 비교 분석하였다. 이산화황과 아황산은 모두 검출되지 않았으며, 황산이온은 MSS 및 RS에서 각각 35,601.65 ppm과 29,878.15~36,097.45 ppm으로 시간이 지날수록 감소되는 경향을 나타내었다. ORP는 MSS(181.15 mV)에서 가장 낮았고 RS1(58.55 mV)에서 가장 높았다. 수분은 MSS가 9.34%였으나 RS에서 크게 감소되었으며, RS의 NaCl은 94.77~95.77%로 증가되었다. RS 시간 경과에 따라 수분과 염도에 차이는 없었다. 불용분과 사분은 MSS에 비해 RS에서 더 높은 함량을 나타내었고 Ca, K, Mg는 유의한 차이를 나타내지 않았다. MSS에 비해 RS의 Cl(556,487.5~612,305.0 ppm) 함량이 높았으며, Br은 MSS(628.1 ppm)에서 더 높은 함량을 나타내었으나 $NO_3$는 모두 유의한 차이를 보이지 않았다. MSS에 비해 RS에서 Pb, As, Hg가 높게 나타났으나 Pb, As, Cd, Hg에서 기준치 이상의 검출은 없었다. MSS와 RS의 Co, Cu, Se, U는 차이가 없었으나 Li, Al, Mn, Fe, Sr은 RS에서 더 높은 함량을 나타내었으며, Mn은 굽는 시간 경과에 따라 감소하는 경향을 나타내었다. 이상의 결과에서 볼 때 MSS와 RS에서 인체에 유해한 영향을 미치는 이산화황 발생은 없었으며, RS 시간 경과에 따른 이산화황 발생도 없는 것으로 나타났다. 중금속의 위해성은 안전 수준이며, 이외 발생될 수 있는 잠재적인 위해성에 대한 관심이 필요할 것으로 판단된다.

Keywords

References

  1. Kim JM, Yoon JH, Ham KS, Kim IC, Kim HL. 2009. Hazards for the sea salt production procedures and its improvement. Safe Food 4: 8-13.
  2. Kim HL, Yoo YJ, Lee IS, Ko GH, Kim IC. 2012. Evaluation of heavy metal contents in mud flat solar salt, salt water, and sea water in the nationwide salt pan. J Korean Soc Food Sci Nutr 41: 1014-1019. https://doi.org/10.3746/jkfn.2012.41.7.1014
  3. KFDA. 2010. Food Code. Korean Food & Drug Administration, Seoul, Korea. p 201-202 (I), 139-140 (II).
  4. Han GJ, Son AR, Lee SM, Jung JK, Kim SH, Park KY. 2009. Improved quality and increased in vitro anticancer effect of kimchi by using natural sea salt without bittern and baked (guwun) salt. J Korean Soc Food Sci Nutr 38: 996-1002. https://doi.org/10.3746/jkfn.2009.38.8.996
  5. Na BJ, Ha SD. 2009. Effectiveness and safety of salt. Food Sci Ind 42: 60-73.
  6. Hwang SH. 1988. A study on the heavy metal contents of common salts in Korea. Korean J Env Health Soc 14: 73-86.
  7. Hong KT, Lee JY, Jang BK. 1996. Heavy metal contents of marketing salts and bay salts by heating. Korean J Sanit 11: 79-84.
  8. Jo EJ, Shin DH. 1998. Study on the chemical compositions of sun dried, refined, and processed salt produced on Chonbuk area. J Food Hyg Safety 13: 360-364.
  9. Park JW, Kim SJ, Kim BH, Kang SG, Nam SH, Jung ST. 2000. Determination of mineral and heavy metal contents of various salts. Korean J Food Sci Technol 32: 1442-1445.
  10. Heo OS, Oh SH, Shin HS, Kim MR. 2005. Mineral and heavy metal contents of salt and salted-fermented shrimp. Korean J Food Sci Technol 37: 519-524.
  11. Eller PM, Cassinelli ME. 1994. NIOSH manual of analytical methods (NMAM). 4th ed. National Institute for Occupational Safety and Health, Cincinnati, OH, USA. p 1-4.
  12. Kim JH. 2004. Risk management of sulfur dioxide residue in herbal medicine. Report of Korean Food & Drug Administration. p 21.
  13. Kim DH, Lim JH, Lee SB. 2003. Characteristics of seaweed salts prepared with various seaweeds. Korean J Food Sci Technol 35: 62-66.
  14. Lee KD, Park JW, Choi CR, Song HW, Yun SK, Yang HC, Ham KS. 2007. Salinity and heavy metal contents of solar salts produced in Jeollanamdo province of Korea. J Korean Soc Food Sci Nutr 36: 753-758. https://doi.org/10.3746/jkfn.2007.36.6.753
  15. Ha JH, Park KY. 1998. Comparison of mineral contents and external structure of various salts. J Korean Soc Food Sci Nutr 27: 413-418.
  16. Ha SD, Kim AJ. 2005. Technological trends in safety of jeotgal. Food Sci Ind 6: 45-64.

Cited by

  1. Elemental Analysis of Sea, Rock, and Bamboo Salts by Inductively Coupled Plasma-Optical Emission and Mass Spectrometry vol.49, pp.17, 2016, https://doi.org/10.1080/00032719.2016.1158831
  2. Feasibility of Applying Conductive Heat and Convective Heat to the Drying Process of Safe Solar Salt vol.44, pp.4, 2014, https://doi.org/10.1007/s42853-019-00034-w
  3. 고품질 천일염 생산을 위한 세정 조건 연구 vol.21, pp.8, 2014, https://doi.org/10.5762/kais.2020.21.8.298
  4. 고품질 천일염 생산공정의 실증연구 vol.21, pp.9, 2020, https://doi.org/10.5762/kais.2020.21.9.128