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Abstract. In this paper, we describe the characterizations of omega limit sets (= ω-limit

set) on R2 in detail. For a local real analytic flow Φ by z′ = f(z) on R2, we prove the

ω-limit set from the basin of a given attractor is in the boundary of the attractor. Using

the result of Jiménez-López and Llibre [9], we can completely understand how both the

attractors and the ω-limit sets from the basin.

1. Introduction

Attractors and ω-limit sets, arising from their ubiquitous applications in Dy-
namical Systems, have played an important role in the field with the useful proper-
ties. Especially, these are used to describe the time behavior for dynamical systems,
and to provide the dynamicists with certain notions for localizing the complexity.
For a manifold M with a vector field on it, and a point q ∈ M , we denote the inte-
gral curve (with the initial point q) by Zq(t). Let an open interval (aq, bq), possibly
with aq = −∞ or bq = ∞, be the maximal domain on which Zq(t) is defined. Let
us define the ω-limit set of q by

ω(q) = {x ∈ M : x = lim
n→∞

Zq(tn) for some sequence tn → bq as n →∞}.

In the paper, we restrict our interest on R2. Let f : R2 → R2 be a real

* Corresponding Author.
† The first author.
Received February 13, 2014; accepted May 22, 2014.
2010 Mathematics Subject Classification: 37C10, 37C70.
Key words and phrases: attractors, ω-limit sets, analytic flows.
This research was supported by Kyungpook National University Research Fund, 2013.
The second named author was supported by Basic Science Research Program through
the National Research Foundation of Korea(NRF) funded by the Ministry of Education,
Science and Technology(2010-0013784).

333



334 J. Choy and H.-Y. Chu

analytic map. Then f defines a real analytic vector field on R2, i.e., z(t)′ = f(z(t))
gives the associated analytic flow. Define Φ : D → R2 by Φ(t, u) = Zu(t) where
D ⊂ (−∞,∞) × R2 is the maximal open domain on which the ODE has solution.
We say Φ defined by z′ = f(z) and Φ, a local real analytic flow.

Jiménez López-Llibre [9] gave the complete list of topologies of ω-limit sets for
local real analytic flows. In a system of ordinary differential equations on Rd, [13]
proved that the boundary of an attractor is the ω-limit set of a boundary of a
corresponding attractor block in a compact version. In [8], it is obtained that a
local topological and dynamical description of an expansive attractors on compact
surfaces. Moreover, it is also proved that the above attractors on compact surfaces
can be decomposed into invariant sets, and the attractors are hyperbolic except
possibly at a finite number of periodic points.

A direct and natural question from the above listed works, can be posed for
the attractors. To be precise, for a prescribed ω-limit set Ω, does there exist an
attractor A having Ω as the boundary BdA? We will have a positive answer for it
with the 0-dimensional exceptions. Those exceptions are easy to treat, which we
call the trivial exceptions. Beside the trivial exceptions, there is a simple method
constructing A from a given Ω by filling “outside” of Ω. We call the topology of
such an A the basic type. Conversely, for a prescribed attractor A, is BdA an ω-limit
set? This question needs a more correct refinement, because A may not have the
connected BdA, and in the case, BdA is never an ω-limit set. Even in the case BdA
is connected, the question cannot be true. Therefore, we ask if an attractor A is of
the basic type, BdA is an ω-limit set. We will give a positive answer in §. For any
attractor A, it is a finite intersection of basic types and thus BdA is a finite union
of ω-limit sets.

Our result should be compared with Jiménez López and Peralta-Salas’ work
[10]. Their result characterizes every possible topology of “global attractors” of
local real analytic attractors. The global attractor G contains finitely many compact
attractors (used in our paper) and all the ω-limit sets (see the precise definition in
[10, pp.3]). Therefore, the global attractor should reflect the simultaneous orbits’
behavior in itself. But, it cannot exist in many cases of local real analytic flows and
polynomial flows. (The main theorem of Jiménez López and Peralta-Salas tells the
topology of the global attractors, if it exists.) For instance, many polynomial flows
(in fact most of them) have an orbit with the ω-limit set homeomorphic to R1.

The attractor in our paper, in contrast, does not assume the compactness. It
seemingly reflects an ω-limit set of only one orbit. However, since any attractor is
a finite intersection of attractors of the basic type, our attractor sufficiently reflects
the ω-limit sets whichever we want to look at. Eventually, some attractor separates
R2 into R1, ..., Rl so that each region Ri is simply connected and admits a global
attractor, denoted by Gi. Now the method of the proof in [10] is applicable to the
respective global attractor Gi and one can see that Gi is a “flower” in the language
of [10].

The attractor is defined after Conley [6] with a slight modification followed by
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later works, as below. (See also [5],[12],[11]).

Definition 1.1. Let Φ be a local real analytic flow by z′ = f(z). An attractor A
is a closed proper nonempty subset of R2 invariant under Φ (i.e. for every x ∈ A,
Zx(t) ∈ A for all t ∈ [0, bx)), such that there exists an open neighborhood U of A
satisfying ⋂

t≥0

Φ(t, U) = A.

The above definition means that x ∈
⋂

t≥0

Φ(t, U) if and only if Zx(s) ∈ U for all

s ∈ (ax, 0]. One needs to be careful when saying Φ(t, B) for a subset B ∈ R2,
because the integral curves may not be complete. We say x ∈ Φ(t, B) if there
exists y ∈ B such that t ∈ (ay, by) and Φ(t, y) = x, equivalently, −t ∈ (ax, bx) and
Φ(−t, x) ∈ B. In fact, we can avoid the iterated use of ax, bx, ay, by, ... in many
statements by globalizing local flows (see the discussion of Remark 2.3).

Recently, Jiménez López-Llibre [9] characterized the ω-limit sets for analytic
flows on the plane (up to homeomorphisms).

Theorem 1.2. ([9, Theorem A]) Let Φ be a local real analytic flow by z′ = f(z)
on R2. Let Ω = ωΦ(u) for some u ∈ R2. Then Ω is one of the following:
(a) the empty set;
(b) a single point;
(c) the boundary of a cactus;
(d) the union of a circle C and the boundaries of finitely many piecewise disjoint
cacti, each of them contained in the disk enclosed by C and intersecting C at exactly
one point;
(e) a union of the boundaries of countably many cacti, half-planes and chains,
which are pairwise disjoint except that each cactus intersects either one of the half-
planes or one of the chains at exactly one point; moreover, every bounded set of R2

intersects finitely many of these sets.

A cactus is a simply connected finite union of homeomorphic closed discs where any
two disks have at most one common point. A subset A of R2 calls a half-plane if
both A and R2− int(A) are homeomorphic to {(x, y) ∈ R2 : x ≥ 0}. We also define
that A ⊆ R2 is a chain if there exist disks {Di}∞i=1 such that:
(1) A = ∪∞i=1Di;
(2) if |i− j| = 1, then Di ∩Dj consists of exactly one point; otherwise Di ∩Dj = ∅;
(3) the disks Di tend to ∞; in other words, every bounded set of R2 intersects
finitely many disks Di.

Their work, hence, motivates the concrete description of attractors in accor-
dance with the explicit ω-limit sets. Our result is the following.

Theorem 1.3.([3, Theorem A]) Let Φ be a local real analytic flow by z′ = f(z) on
R2. Suppose the ω-limit set Ω of u0 ∈ R2 (with respect to Φ) is a 1-dimensional set.
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Then, there exists an attractor A such that the boundary BdA = Ω. Furthermore,
the attractor A is homeomorphic to one of the following
(a) a cactus;
(b) the union of pairwise disjoint cacti, and a complement of a closed disk B such
that C = BdB encloses all the cacti and each cactus intersects C exactly by one
point;
(c) a union of countably many cacti, half-planes and chains, which are pairwise
disjoint except that each cactus intersects either one of the half-planes or one of the
chains at exactly one point; moreover, every bounded set of R2 intersects finitely
many of these sets.

Theorem 1.3 and its proof are based upon Jiménez López-Llibre’s theorem ([9,
Theorem A]) (principally the local analysis through the desingularization technique
therein). In [9], Jiménez López and Llibre obtained more extensive results for
the polynomial flows and the analytic flows on the sphere and the real projective
plane, with more restrictive conclusions. In fact, their results include the converse
statements, i.e., any subset of the type in the list of Theorem 1.2, is always expressed
as the ω-limit set of a local real analytic flow (see the statements of the theorems
in [9, §2] and [9, §6]). Hence, all the cases in our theorem are not vacuous ones.

The study of the behavior of a local real analytic flow along the boundary of
the attractors, is our second aim.

We define the basin of attraction of A, denoted by B(A), as

{q ∈ M | ω(q) 6= ∅, ω(q) ⊆ A}.
2. The ω-limit Sets for Analytic Flows

In this section, we are going to prove Theorem 2.5. Before the proof, we need
to study some general aspect of local flows and attractors. Let Φ be a local flow by
an ODE (x1(t)′, · · · , xn(t)′) = g(x1(t), · · · , xn(t)) (t ∈ R1) where g : Rn → Rn is a
continuous function (n ≥ 1). We denote by (ax, bx) the maximal domain where the
ODE is solvable with the initial condition x = (x1(0), · · · , xn(0)). As in Definition
1.1, a proper closed Φ-invariant subset A of Rn is called an attractor if there is
an open neighborhood U of A such that A =

⋂
t≥0 Φ(t, U). The meaning of the

intersection was explained after Definition 1.1 for n = 2, and in our case, it is
adopted in a direct way. For a given attractor A, the associated open neighborhood
U is called an attractor block. The basin B(A) of A, as in the case of n = 2, is the
set of u ∈ Rn satisfying ω(u) is a nonempty subset of A.

In this general situation, we will have two descriptions on the attractors and
the orbits in Propositions 2.1 and 2.4.

Lemma 2.1. Let Φ be a local flow. Let A be an attractor and B(A) be a basin of
attractor. If a point x is in B(A)−A, then the intersection of the (positive) Φ-orbit
of x and the attractor is empty.

Proof. Let O+
Φ (x) be the (positive) Φ-orbit of x, i.e.

O+
Φ (x) = {Φ(t, x)|t ∈ [0, bx)}.
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Suppose that O+
Φ (x)∩A 6= ∅. Thus there exists t0 ≥ 0 such that Φ(t0, x) ∈ A where

U is an attractor block for the attractor A. Therefore, denoting x0 = Φ(t0, x), we
have x0 = Φ(t0, x) ∈ ⋂

t≥0 Φ(t, U) So for all t ≥ 0,

x = Φ(−t0, x0) ∈ Φ(−t0, Φ(t, U)) = Φ(−t0 + t, U).

Since
⋂

t≥−t0
Φ(t, U) ⊆ ⋂

t≥0 Φ(t, U), x ∈ ⋂
t≥0 Φ(t, U), i.e. x ∈ A. This is a

contradiction, so the intersection is empty. 2

Remark 2.2. One obvious remark is that even if, in the definition of attractors,
we drop the condition “A is Φ-invariant”, A is necessarily Φ. This is because
A =

⋂
t≥0 Φ(t, U) for some open neighborhood U of A.

Remark 2.3. For a given local flow Φ on Rn by a continuous function g, we can
normalize Φ in a certain sense so that the normalized flow Φ′ is a (global) flow,
i.e. every integral curve of Φ′ is complete and its trajectory coincides the integral
curve of Φ. Indeed, by replacing g to a bounded continuous function g′ (after a
suitable rescaling), we have the induced flow Φ′ satisfying those properties. This is
well-known procedure in which a local flow Φ is topologically equivalent to a flow
Φ′. Since Φ′ is a flow (in the ordinary sense), Φ′(t, B) for any t ∈ R1 and any subset
B ∈ Rn is well-defined, but Φ′(t, B) 6= Φ(t, B) in general. In the case Φ is a local
real analytic flow, we cannot expect Φ′ is a real analytic flow. However, A ⊂ Rn

(resp. Ω) is an attractor (resp. ω-limit set) of Φ if and only if it is an attractor
(resp. ω-limit set) of Φ′. Of course, in some arguments, we could save the labors,
avoiding the iterated use of ax, bx, etc.

We can say further: the Φ-invariance of the boundaries of the attractors.

Proposition 2.4. Let A be an attractor of a local flow Φ. Then Φ(BdA, t) ⊂ BdA
for all t ≥ 0, i.e., the boundary of an attractor for a local flow is positive invariant
for the flow.

Proof. Suppose the contrary of the conclusion. Then by the invariance of attractors,
we may assume that there exist x ∈ BdA and t0 > 0 such that Φ(t0, x) is in the
interior of A. From the local compactness, we can choose a compact neighborhood
C of Φ(t0, x) in the interior of A such that Φ(−t0, C) is also a compact neighborhood
of x. Thus, we can pick y ∈ U − A where U is an attractor block of A such that
Φ(t0, y) ∈ A. This contradicts Lemma 2.1. Hence the boundary is positive invariant
for the analytic flow. 2

Theorem 2.5. Let Φ be a local real analytic flow by z′ = f(z) on R2. Let A
be a nonempty attractor with dimension greater than 1 and B(A) be the basin of
attractor. Assume that dim(BdA ∩ SingΦ) = 0. Then, for every u ∈ B(A) − A,
the ω-limit set ω(u) is in the boundary of A and homeomorphic to one of (b)–(e)
in Theorem 1.2.

Proof. Let u ∈ B(A) − A. By the definition of a basin of attractor, the ω-limit
set of u is nonempty and is contained in the attractor A. Using Lemma 2.1, we
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obtain that ω(u) ⊆ BdA. Indeed, assume that ω(u) * BdA. Then we get that
ω(u) ∩ (B(A) − A) 6= ∅ which is a contradiction for the definition of a basin of
attraction.

Next, we suppose that the boundary of the attractor is smooth for Φ. So we
can say that the ω-limit set ω(u) is a subset of one of the sets described in (c)–(e)
in Theorem 1.2. Otherwise, by the hypothesis dim(BdA ∩ SingΦ) = 0, the ω-limit
set is a one-point set in BdA. 2

Remark 2.6. The problem for the description of an ω-limit set for a flow is so
interesting and important to study dynamical systems. Given an attractor, the
shape of the ω-limit set from the basin of the attractor is completely dependent
upon the characterization of the attractor.

Corollary 2.7. Let Φ be a local real analytic flow by z′ = f(z) on R2 and
A a nonempty compact attractor with dimension greater than 1. Assume that
dim(BdA ∩ SingΦ) = 0. Then the ω-limit set from the basin of A is compact and
homeomorphic to one of (b)–(d) in Theorem 1.2.

Remark 2.8. The problem for the description of an ω-limit set for a flow is so in-
teresting and important to study dynamical systems. Given an attractor, actually,
the shape of the ω-limit set from the basin of the attractor is completely dependent
upon the characterization of the attractor.
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