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Abstract. In this article we introduce different types of multiplier I-convergent double

sequence spaces. We study their different algebraic and topological properties like solid-

ity, symmetricity, completeness etc. The decomposition theorem is established and some

inclusion results are proved.

1. Introduction

The notion of paranormed sequence space was introduced by Nakano [12] and
Simons [16]. It was further investigated from sequence space point of view and
linked with summability theory by Maddox ([10], [11]), Lascarides [9], Tripathy
[18], Tripathy and Hazarika [23], Tripathy and Sen [29] and many others.

The notion of I-convergence was studied at the initial stage by Kostyrko, Šalát
and Wilczynski [8]. It generalizes and unifies different notions of convergence of
sequences. The notion was further investigated by Šalát, Tripathy and Ziman ([14],
[15]), Tripathy and Dutta [21], Tripathy and Hazarika ([22], [23], [24]), Tripathy,
Hazarika and Choudhary [25], Tripathy and Tripathy [30] and many others.

The scope for the studies on sequence spaces was extended on introducing the
notion of associated multiplier sequences. Goes and Goes [5] defined the differenti-
ated sequence space dE and the integrated sequence space

∫
E for a given sequence

spacee E, with the help of multiplier sequences (k−1) and (k) respectively. Kamthan
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[7] used the multiplier sequence (k!). It was further investigated from sequence space
point of view by Tripathy and Hazarika [22], Tripathy and Mahanta [26] and others.
In this article we shall consider a general multiplier sequence Λ = (λk) of non-zero
scalars.

2. Definitions and Background

Throughout N , R and C denote the sets of natural, real and complex numbers
respectively.

Let X 6= ∅, then a non-void class I ⊆ 2X is called an ideal if I is additive (i.e.
A,B ∈ I ⇒ A ∪B ∈ I) and hereditary (i.e. A ∈ I and B ⊆ A ⇒ B ∈ I). An ideal
is said to be nontrivial if I 6= 2X . A non-trivial ideal I is said to be admissible if
I contains every finite subset of N . A non-trivial ideal I is said to be maximal if
there does not exist any non-trivial ideal J 6= I containing I as a subset.

For any ideal I, there is a filter Ψ(I) corresponding to I, given by Ψ(I) = {K ⊆
N : N \K ∈ I}.

A sequence (xn) is said to be I-convergent to L ∈ C, if for a given ε > 0, the
set {n ∈ N : |xn − L| ≥ ε} ∈ I.

Throughout the article a double sequence A is denoted by (ank) i.e. a double
infinite array of complex numbers, ank for all n, k ∈ N .

A double sequence A = (ank) a is said to converge in Pringsheims sense if
there exists a number L such that (ank) converges to L as both n and k tend to
∞ independent of one another. It can be easily seen that convergence of (ank) in
Pringsheims sense does not guarantee the boundedness of (ank).

Hardy [6] introduced the notion of regular convergence for double sequences. A
double sequence (ank) is said to converge regularly if it convergences in Pringsheims
sense and in addition, the following limits exist

lim
n→∞

ank = xk(k = 1, 2, 3, ...)

and

lim
k→∞

ank = yn(n = 1, 2, 3, ...).

Throughout w2 , (`∞)2, c, (c0)2, (c)R
2 , (c0)R

2 denote the spaces of all, bounded,
convergent in Pringsheims sense, null in Pringsheims sense, regularly convergent
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and regularly null double sequences respectively. The space (`∞)2 is a normed lin-
ear space with respect to the norm ||A|| = supnk |ank|.

A double sequence space E is said to be solid if (αnkank) ∈ E, whenever
(ank) ∈ E and for all sequences (αnk) of scalars with |αnk| ≤ 1, for all n, k ∈ N .

A double sequence space E is said to be symmetric if (aπ(nk)) ∈ E, whenever
(ank) ∈ E, where π is a permutation of N ×N . A double sequence space E is said
to be monotone if it contains the canonical pre-images of its step spaces.

A double sequence space E is said to be sequence algebra if A ◦B = (ankbnk) ∈
E, whenever A = (ank) ∈ E and B = (bnk) ∈ E.

A double sequence space E is said to be convergence free if B = (bnk) ∈ E,
whenever A = (ank) ∈ E and ank = 0 ⇒ bnk = 0.

Tripathy [18] introduced the notion of density for the subsets of N ×N .

A subset E of N ×N is said to have density ρ(E) if

lim
p,q→∞

1
pq

∑

n≤p

∑

k≤q

χE(n, k) exists.

Tripathy and Tripathy [30] introduced the notions of Logarithmic density and
uniform density of a subset E of N ×N as follows : let sn =

∑n
k=1

1
k .

Then a subset E of N ×N is said to have logarithmic density ρ∗(E) if

ρ∗(E) = lim
p,q→∞

1
spsq

p∑
n=1

q∑

k=1

χE(n, k)
nk

exists.

The above expression if exists is equivalent to the following :

ρ∗(E) = lim
p,q→∞

1
log p log q

p∑
n=1

q∑

k=1

χE(n, k)
nk

exists.

Let p, q > 1 and s, t > 1, be integers. Let D ⊆ N ×N and D(p + 1, p + t; q +
1, q + s) = card {(n, k) ∈ D : p + 1 ≤ n ≤ p + t and q + 1 ≤ k ≤ q + s}.

Put βt,s = lim infp,q→∞D(p+1, p+t; q+1, q+s) and βt,s = lim supp,q→∞D(p+

1, p + t; q + 1, q + s). Let u−(D) = limt,s→∞
βt,s

ts exists and u−(D) = limt,s→∞
βt,s

ts
exists.

If u−(D) = u−(D) then u−(D) = u−(D) is called the uniform density of D.
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3. Paranormed I-convergent Double Sequences

Throughout the ideals of 2N will be denoted by I and the ideals of 2N×N will
be denoted by I2. A double sequence (ank) is said to be I-convergent to L in Pring-
sheims sense if for every ε > 0, the set {(n, k) ∈ N × N : |ank − L| ≥ ε} ∈ I2.
Let (cI)2 and (cI

0)2 denote the spaces of I-convergent and I-null double sequences
respectively.

Throughout p = (pnk) is a double sequence of positive numbers. The notion of
paranormed double sequences was investigated by Turkmenoglu [31]. We define the
following multiplier double sequence spaces.

(cI)2(Λ, p) = {(ank) ∈ w2 : I − lim |λnkank − L|pnk = 0 for some L ∈ C}

(cI
0)2(Λ, p) = {(ank) ∈ w2 : I − lim |λnkank|pnk = 0}

(ank) ∈ (cI)R
2 (Λ, p) if and only if (ank) ∈ (cI)2(Λ, p) and the following limits

exist:

I − lim |λnkank − Lk|pnk = 0 for some Lk, for each k ∈ N

and I − lim |λnkank −Mn|pnk = 0 for some Mn, for each n ∈ N .

(ank) ∈ (cI
0)

R
2 (Λ, p) if and only if (ank) ∈ (cI

0)2(Λ, p) and

I − lim |λnkank|pnk = 0 for each k ∈ N

I − lim |λnkank|pnk = 0 for each n ∈ N .

Example 3.1. Let I2(P ) be the class of all subsets of N ×N such that D ∈ I2(P )
implies that there exist n0, k0 ∈ N , such that D ⊆ N × N \ {(n, k) ∈ N × N :
n ≥ n0, k ≥ k0}. Then I2(P ) is an ideal of 2N×N and we will get definitions of
paranormed convergent multiplier double sequence spaces. With I2(P ), if we con-
sider the ideal I(f), the class of all finite subsets of N, then we get the paranormed
regular convergent multiplier double sequence spaces.

Example 3.2. Let us consider I2(ρ) ⊂ 2N×N i.e. the class of all subsets of N ×N
of zero density. Then I2(ρ) is an ideal of 2N×N . If I(d) is the class of all subsets
A ⊂ N such that d(A) = limn→∞ 1

n

∑n
k=1 χA(k) = 0, then I(d) is an ideal of 2N .

Considering I(d) along with I2(ρ) one will get different types of paranormed statis-
tically convergent multiplier double sequence spaces.

Example 3.3. Let us consider I2(ρ∗) ⊂ 2N×N i.e. the class of all subsets of N ×N



Paranormed I-convergent Double Sequence Spaces Associated with Multiplier Sequences 325

of zero logarithmic density. Then I2(ρ∗) is an ideal of 2N×N . If I(δ) is the class of
all subsets A of N with δ(A) = limn→∞ 1

sn

∑n
k=1

χA(k)
k = 0, then I(δ) is an ideal of

2N . With I2(ρ∗) if we consider I(δ), then we will get different types of paranormed
logarithmic convergent multiplier double sequence spaces.

Example 3.4. Let us consider I2(u∗) ⊂ 2N×N i.e. the class of all subsets of N ×N
of zero uniform density. Then I2(u∗) is an ideal of 2N×N . Along with I2(u∗), if
we consider I(u), the class of all subsets of N of uniform density zero, then we will
get the definitions of different types of paranormed uniformly convergent multiplier
double sequence spaces.

Let (`∞)2(Λ, p) = {(ank) ∈ w2 : supn,k |λnkank|pnk < ∞}

Also we define the following sequence spaces:

(cI)BP
2 (Λ, p) = (cI)2(Λ, p) ∩ (`∞)2(Λ, p);

(cI
0)

BP
2 (Λ, p) = (cI

0)2(Λ, p) ∩ (`∞)2(Λ, p);

(cI)BR
2 (Λ, p) = (cI)R

2 (Λ, p) ∩ (`∞)2(Λ, p);

(cI
0)

BR
2 (Λ, p) = (cI

0)
R
2 (Λ, p) ∩ (`∞)2(Λ, p);

Note 3.1. If p = (pnk) is a double sequence of positive real numbers and H =
sup
n,k pnk < ∞, then for sequences (ank) and (bnk) of complex numbers, we have the
following inequality:

|ank + bnk|pnk ≤ J(|ank|pnk + |bnk|pnk)

where J = max(1, 2H−1).
If supn,k pnk < ∞, then using the above inequality we can easily check that all

the spaces defined above are linear spaces.

Let A = (ank) and B = (bnk) be two double sequences. Then we say
that ank = bnk for almost all n and k relative to I2 (in short a.a.n&kr. I2) if
{(n, k) ∈ N ×N : ank 6= bnk} ∈ I2.

Let A = (ank) be a double sequence and I2 be an ideal of 2N×N . A subset
D of C, the field of complex numbers is said to contain ank for a.a.n&k r. I2 if
{(n, k) ∈ N ×N : ank /∈ D} ∈ I2.

Lemma 3.1. If a sequence space is solid, then it is monotone.

Lemma 3.2. The following are equivalent:
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(i) (ank) ∈ (cI)2 and I − lim ank = L.

(ii) (ank − L) ∈ (cI)2.

(iii) there exists a sequence (bnk) ∈ c2 such that ank = bnk for a.a.n&kr.I2.

(iv) there exists a subset M = {(ni, kj) ∈ N × N : i, j ∈ N} of N × N such that
M ∈ Ψ(I2) and (anikj − L) ∈ (c0)2.

(v) there exists sequences (xnk), (ynk) such that ank = xnk + ynk, for all n, k ∈ N ,
where limxnk = L and (ynk) ∈ (cI

0)2.

Proof. The equivalence of (i) and (ii) is clear from definitions.

(i) ⇒ (iii) Since I − lim |ank − L| = 0, we have, for any ε > 0, the set {(n, k) ∈
N × N : |ank − L| ≥ ε} ∈ I2. We select the increasing sequence (Tj) and (Mj) of
natural numbers such that if p > Tj and q > Mj , then the set

{(n, k) ∈ N ×N : n ≤ p, k ≤ q and |ank − L| ≥ 1
j
} ∈ I2.

We define the sequence (bnk) as follows:

bnk = ank if n ≤ T1 or k ≤ M1. Also for all (n, k) with Tj < n ≤ Tj+1 or
Mj < k ≤ Mj+1, let bnk = ank if |ank − L| < 1

j , otherwise bnk = L.

We show that (bnk) converges to L. Let ε > 0. We choose ε such that ε > 1
j .

We see that for n > Tj and k > Mj , |bnk − L| < ε. Hence lim bnk = L.

Next we assume that Tj < n ≤ Tj+1 or Mj < k ≤ Mj+1, then the set
A = {(n, k) ∈ N ×N : ank 6= bnk} ⊆ {(n, k) ∈ N ×N : |ank − L| ≥ 1

j } ∈ I2.

Hence A ∈ I2 and ank = bnk for a.a.n&kr. I2.

(iii) ⇒ (iv) Suppose there exist a sequence (bnk) ∈ c2 such that ank = bnk for
a.a.n&kr. I2. Let M = {(n, k) ∈ N × N : ank = bnk}. Then M ∈ Ψ(I2). We can
enumerate M as M = {(ni, kj) ∈ N × N : i, j ∈ N}, on neglecting the rows and
columns those contain finite number of elements. Then |anikj −L| → 0 as i, j →∞.

(iv) ⇒ (v) we define the sequences (xnk), (ynk) as follows:

xnk = ank, if (n, k) ∈ M

= L, otherwise

ynk = 0, if (n, k) ∈ M

= ank − L, otherwise.
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Then we can easily check that the conditions of (v) hold.
(v) ⇒ (i) Suppose the conditions of (v) hold. Then for any ε > 0, the sets

A = {(n, k) ∈ N × N : |xnk − L| < ε
2} ∈ Ψ(I2) and B = {(n, k) ∈ N × N :

|ynk| < ε
2} ∈ Ψ(I2).

Now for each (n, k) ∈ A ∪B we have |ank − L| < ε and A ∩B ∈ Ψ(I2).
Hence I − lim ank = L. This completes the proof of the lemma. 2

4. Main Results

Theorem 4.1. If 0 < inf
n,k pnk < sup

n,k pnk < ∞, then the spaces (`∞)2(Λ, p),
(cI)BP

2 (Λ, p), (cI
0)

BP
2 (Λ, p), (cI)BR

2 (Λ, p), (cI
0)

BR
2 (Λ, p) are paranormed spaces, para-

normed by

g((ank)) = sup
n,k

|λnkank|
pnk
M , where M = max(1, sup

n,k
pnk).

Proof. We consider the space (`∞)2(Λ, p). Clearly for any A = (ank) ∈ (`∞)2(Λ, p),
g(θ2) = 0, where θ2 is the double sequence, whose all the terms are zero,
g(−A) = g(A) and g(A) ≥ 0. Also g(A + B) ≤ g(A) + g(B).

Let A → θ2, α → 0, then g(A) → 0. We have for a given scalar α

g(αA) = sup
n,k

|αλnkank|
pnk
M < max(1, |α|)g(A).

Thus α fixed and A → θ2 ⇒ g(A) → 0. Next let α → 0 and A is fixed. Without
loss of generality we can take |α| < 1. Then for given A = (ank),

g(αA) = sup
n,k

|αλnkank|
pnk
M ≤ |α| h

H g(A) → 0 as α → 0,

where h = infn,k pnk > 0.
Hence (`∞)2(Λ, p) is paranormed by g.
Similarly we can prove that the other spaces are paranormed by g. 2

The proof of the following result is easy, so omitted.

Theorem 4.2. If 0 < inf
n,k pnk < sup

n,k pnk < ∞, then the spaces (`∞)2(Λ, p),
(cI)BP

2 (Λ, p), (cI
0)

BP
2 (Λ, p), (cI)BR

2 (Λ, p), (cI
0)

BR
2 (Λ, p) are complete paranormed

spaces, paranormed by g.

Theorem 4.3. The following are equivalent:
(i) The double sequence (ank) ∈ (cI

0)2(Λ, p).
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(ii) there exists a sequence (bnk) ∈ (c0)2(Λ, p) such that ank = bnk for a.a.n&kr. I2.

(iii) there exists a subset M = {(ni, kj) ∈ N × N : i, j ∈ N} of N × N such that
M ∈ Ψ(I2) and limi,j |λnikj anikj |pnikj = 0.

(iv) there exists sequences (xnk), (ynk) such that ank = xnk + ynk, for all n, k ∈ N ,
where (xnk ∈ (c0)2(Λ, p)) and (ynk ∈ (cI

0)2(Λ, p)) such that {(n, k) ∈ N ×N : ynk 6=
0} ∈ I2.

Proof. Let (ank) ∈ (cI
0)2(Λ, p). Then I − lim |λnkank|pnk = 0. Let us write dnk =

|λnkank|pnk . Then (dnk) ∈ (cI
0)2. The result follows from lemma 3.2. 2

Theorem 4.4. The spaces (cI
0)2(Λ, p), (cI

0)
BP
2 (Λ, p), (cI

0)
R
2 (Λ, p), (cI

0)
BR
2 (Λ, p) are

solid as well as monotone.

Proof. Let (ank) ∈ (cI
0)2(Λ, p). Let (αnk) be a double sequence of scalars such that

|αnk| ≤ 1, for all n, k ∈ N . Let ε > 0 be given. Then the solidness of the space
follows from the following inclusion relation

{(n, k) ∈ N ×N : |λnkank|pnk ≥ ε} ⊇ {(n, k) ∈ N ×N : |αnkλnkank|pnk ≥ ε}.

Similarly we can show that the other spaces are solid. Also by lemma 3.1, it
follows that the spaces are monotone. 2

Theorem 4.5. If I2 is not maximal, then the spaces (cI)2(Λ, p), (cI)BP
2 (Λ, p),

(cI)R
2 (Λ, p), (cI)BR

2 (Λ, p) are neither solid nor monotone.

Proof. We first show that (cI)2(Λ, p) is not monotone. Let ank = 1 for all n, k ∈ N ,
λnk = 1 for all n, k ∈ N . Then (ank) ∈ (cI)2(Λ, p). Since I2 is not maximal, there
exists a subset K of N × N such that K /∈ I2 and N \K /∈ I2. Let us define the
sequence (bnk) by

bnk = ank, if (n, k) ∈ K;
= 0, otherwise.

Then (bnk) belongs to the canonical preimage of K-step space of (ank). But (bnk) /∈
(cI)2(Λ, p). Hence (cI)2(Λ, p) is not monotone and so from lemma 3.1 it is not solid.
Similarly we can prove that the other spaces are not solid by constructing suitable
examples. 2

Theorem 4.6. If I2 is neither maximal nor I2 = I2(f) (ideal of all finite sub-
sets of N ×N), then the spaces (cI

0)2(Λ, p), (cI
0)

BP
2 (Λ, p), (cI

0)
BR
2 (Λ, p), (cI

0)
R
2 (Λ, p),

(cI)2(Λ, p), (cI)BP
2 (Λ, p), (cI)R

2 (Λ, p), (cI)BR
2 (Λ, p) are not symmetric.

Proof. The proof follows from the following example:
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Example 4.1. Let λnk = 1 for all n, k ∈ N . We first consider the space (cI
0)2(Λ, p).

Let us consider the sequence (ank) defined by

ank = 1, if (n, k) ∈ A;
= 0, otherwise,

where A ∈ I2 is infinite. Then (ank) ∈ (cI
0)2(Λ, p)

Let K ⊆ N×N be such that K /∈ I2 and N\K /∈ I2. Consider the rearrangement
(bnk) of (ank) as follows:

bnk = 1, if (n, k) ∈ K;
= 0, otherwise.

Then (bnk) /∈ (cI
0)2(Λ, p). Hence (cI

0)2(Λ, p) is not symmetric. 2

Theorem 4.7. The spaces (cI
0)2(Λ, p), (cI

0)
BP
2 (Λ, p), (cI

0)
R
2 (Λ, p), (cI

0)
BR
2 (Λ, p),

(cI)2(Λ, p), (cI)BP
2 (Λ, p), (cI)R

2 (Λ, p), (cI)BR
2 (Λ, p) are not sequence algebras.

Proof. The proof follows from the following example:

Example 4.2. Consider the space (cI
0)2(Λ, p). Let I2 = I2(P ). Also let λnk = 1

n2k2

for all n, k ∈ N and pnk = 1 for all n, k ∈ N . Let us consider the sequences (ank)
and (bnk) defined as follows.

a1k = k3, an1 = n3 for all n, k ∈ N and ank = nk otherwise.

b1k = 2k3, an1 = 2n3 for all n, k ∈ N and ank = 2nk otherwise.

Then (ank) ∈ (cI
0)2(Λ, p) and (bnk) ∈ (cI

0)2(Λ, p), but (ankbnk) /∈ (cI
0)2(Λ, p). 2

Similarly we can show that the other spaces are not sequence algebras.

Theorem 4.8. The spaces (cI
0)2(Λ, p), (cI

0)
BP
2 (Λ, p), (cI

0)
R
2 (Λ, p), (cI

0)
BR
2 (Λ, p),

(cI)2(Λ, p), (cI)BP
2 (Λ, p), (cI)R

2 (Λ, p), (cI)BR
2 (Λ, p) are not convergence free.

Proof. We consider the space (cI)2(Λ, p). The proof follows from the following ex-
ample:

Example 4.3. Let I = I2(P ). Also let λnk = (nk)−1, for all n, k ∈ N and pnk = 1
for all n, k ∈ N . Let us consider the sequence (ank) defined by a1k = 0 = an1 for
all n, k ∈ N and ank = nk otherwise.

Then (ank) ∈ (cI)2(Λ, p).
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Consider the sequence (bnk) defined by b1k = 0 = an1 for all n, k ∈ N and
bnk = n2k2 otherwise.

Then (bnk) /∈ (cI)2(Λ, p). Hence (cI)2(Λ, p) is convergence free. 2

Theorem 4.9. Let p = (pnk), q = (qnk) be two sequences of positive real numbers.
Then (cI

0)
BP
2 (Λ, p) ⊇ (cI

0)
BP
2 (Λ, q) if and only if

lim inf
(n,k)∈K (pnk

qnk
) > 0 where K ⊆ N ×N such that K ∈ Ψ(I2).

Proof. Let

(4.1) lim inf
(n,k)∈K

(
pnk

qnk
) > 0 for some K ∈ Ψ(I2).

Then there exists α > 0 such that pnk > αqnk for sufficiently large pair (n, k) ∈ K.
Let (ank) ∈ (cI

0)
BP
2 (Λ, p). Then for given ε > 0 we have

A = {(n, k) ∈ N ×N : |λnkank|qnk < ε} ∈ Ψ(I2).

Let B = A ∩ K. Then B ∈ Ψ(I2). Now for all (n, k) ∈ B, |λnkank|pnk ≤
(|λnkank|qnk)α.
Thus (ank) ∈ (cI

0)
BP
2 (Λ, p).

Conversely let (cI
0)

BP
2 (Λ, p) ⊇ (cI

0)
BP
2 (Λ, q), but there exists no K ∈ Ψ(I2) such

that (4.1) holds. Then there exists C = {(ni, kj) : i, j ∈ N} ⊂ N ×N with C /∈ I2

such that ipnikj < qnikj . We define the sequence (ank) by

ank =
(i−1)

1
qnikj

|λnikj |
, if n = ni; k = kj ;

= 0, otherwise.

Then (ank) ∈ (cI
0)

BP
2 (Λ, q). But |λnikj anikj |pnikj > exp(−i−1logi).

Hence (ank) /∈ (cI
0)

BP
2 (Λ, p), a contradiction.

Hence the theorem. 2

Theorem 4.10. The spaces (cI)BP
2 (Λ, p), (cI

0)
BP
2 (Λ, p), (cI)BR

2 (Λ, p), (cI
0)

BR
2 (Λ, p)

are not separable. Proof. Consider the space (cI)BP
2 (Λ, p). Let A be a countable

dense subset of (cI)BP
2 (Λ, p). Then any point of (cI)BP

2 (Λ, p) is either a point
of A or a limit point of A. Let M ∈ I2 be such that M is infinite. Also let
L = {(ank) : ank = 0 if (n, k) /∈ M and ank = 0 or 1 otherwise.} Then L is
uncountable. Now we consider open balls of radius δ < 1

2 with centers at the points
of L. Then these balls are disjoint and uncountable in number. Also each ball
must contain at least one point of A. Hence we arrive at a contradiction. Thus
(cI)BP

2 (Λ, p) is not separable. 2
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