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Abstract. We introduce a new method to transform a knot diagram into a diagram of

an unknot using a polynomial representation of the knot. Here the unknotting sequence

of a knot diagram with least number of crossing changes can be realized by a family

of polynomial maps. The number of singular knots in this family is defined to be the

singularity index of the diagram. We show that the singularity index of a diagram is

always less than or equal to its unknotting number.

1. Introduction

Distinguishing knots up to ambient isotopy is still a major task amongst knot
theorists. Many knot invariants have been invented for this purpose. They are
either numbers or polynomials or some algebraic structures. However, an invariant
is useful only if it is computable. Unknotting number of a knot is one such knot
invariant. This is a number, that can be easily defined (cf. [4]), but is hard to
compute. For a very long period of time knot theorists had no general method
for finding the unknotting number of knots except when its value is 1. Using the
techniques of 4- dimensional topology Peter Kronheimer and Tromasz Mrowka [5]
proved a 40-year old conjecture due to John Milnor [3] regarding the unknotting
number of all torus knots of type (p, q), which says that unknotting number for
all torus knots of type (p, q) (p and q being co-prime) is (p− 1)(q − 1)/2. This was
later proved by Rasmussen using Khovanov Homology [6]. For other classes of knots
nothing very significant can be said.

In this paper, we have made an attempt to compute the unknotting number of
knot diagrams using their polynomial representations. We know that the classical
knots in S3 can be realized as one point compactification of some proper and smooth
embedding of R in R3 and a three dimensional plot of such embedding, when viewed
on a suitable plane, represents a knot diagram of an open knot. It has been proved
that, given any open knot diagram, one can choose an embedding of the form
t 7→ (f(t), g(t), h(t)), where f(t), g(t) and h(t) are real polynomials, that represnts

Received April, 2012; revised September 10, 2012; accepted March 19, 2013.
2010 Mathematics Subject Classification: Primary 57M25; Secondary 14P25.
Key words and phrases: unknotting number, double point, immersion.

271



272 Rama Mishra

this diagram. Using such a polynomial representation we define an unknotting
operation in a knot diagram with the hope that it will help in the computation of
unknotting number. We prove (in Proposition 2.8) that given a polynomial knot
φ : R→ R3, there exists a continuous one parameter family of polynomial maps Ps

which are immersions from R to R3 such that P0 = φ and PR represents an unknot
for some R and the projections of each Ps for 0 ≤ s ≤ R are identical. Thus the
given knot is transformed into an unknot by making the changes in the nature of
crossing. During this homotopy each time when we pass through a singular knot,
the knot type changes. We observe that, this provides us the exact information
regarding the order in which the crossings are switched. Each switch in a crossing
corresponds to some Ps which is not an embedding, i.e., is a singular knot. As
the deformation takes place inside a compact set the number of singular knots in
this deformation is finite and we define it to be the polynomial singularity index
of the polynomial knot. The minimum of all polynomial singularity index over
all polynomial representations representing a specific knot diagram is defined as
the singularity index of that knot diagram. The minimal singularity index of all
knot diagrams of a knot K is defined as the singularity index of the knot K. The
singularity index of a knot is difficult to compute. However the singularity index of a
knot diagram can be computed easily by the method described here. We prove that
the singularity index of a knot diagram is always less than or equal to its unknotting
number.

This paper is organized as follows: In Section 2, we provide the basic back-
ground regarding polynomial knots which is relevant in the context of this paper.
In Section 3, we define the singularity index of a knot and at the end we prove the
main theorem. In Section 4, we compute the singularity index of a few knot dia-
grams using their polynomial representation constructed by us in our earlier work.

2. Polynomial Knots

Definition 2.1: By a polynomial knot we mean an embedding ϕ : R ↪→ R3 defined
as φ(t) = (f(t), g(t), h(t)), where f(t), g(t) and h(t) are real polynomials.

Definition 2.2: Two polynomial knots ϕ0 and ϕ1 are said to be P-isotopic if there
exists a one parameter family {ps, 0 ≤ s ≤ 1} of polynomial knots (embeddings)such
that p0 = ϕ0 and p1 = ϕ1. This family {ps, 0 ≤ s ≤ 1} is called a P-isotopy between
ϕ0 and ϕ1.

Definition 2.3: Two polynomial knots ϕ0 and ϕ1 are said to be P-regular iso-
topic if there exists a one parameter family {ps, 0 ≤ s ≤ 1} of polynomial knots
(embeddings) such that p0 = ϕ0 and p1 = ϕ1 and the knot diagrams of each ps in
this family differ from each other by Reidemister Moves (2) and (3) ( cf. [4]) only.
This family {ps, 0 ≤ s ≤ 1} is called a P- regular isotopy between ϕ0 and ϕ1.

It is easy to check the following remarks.
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Remark 2.4:

1. Given a polynomial knot t 7→ (f(t), g(t), h(t)), up to P-isotopy we can always
assume that the degree of h(t) is odd and its leading coefficient is positive.

2. The set of ambient isotopy classes of open knots is in bijective correspondence
with the set of P-isotopy classes of polynomial knots.

3. Every polynomial knot is P-isotopic to some polynomial knot defined as
ϕ(t) = (f(t), g(t), h(t)), where f(t), g(t) and h(t) are real polynomials such
that the map t 7→ (f(t), g(t)) from R to R2 is a generic immersion, i.e., the
projection of φ into xy plane is a regular projection, degree of h(t) is odd,
leading coefficient of h(t) is positive and for each parametric value t corre-
sponding to a double point in this regular projection h(t) < 0 for an under
crossing and h(t) > 0 for an over crossing. A polynomial knot with this prop-
erty will be referred to as a good polynomial knot.

4. Given a good polynomial knot t 7→ (f(t), g(t), h(t)) there is a naturally asso-
ciated knot diagram drawn on xy plane.

Definition 2.5: Two polynomial knots ϕ0 and ϕ1 are said to be strongly P-regular
homotopic if there exists a one parameter family {ps = (fs, gs, hs), 0 ≤ s ≤ R}
of polynomial maps from R to R3 such that p0 = ϕ0 and pR = ϕ1 and for each
0 ≤ s ≤ R, the maps t 7→ (fs(t), gs(t)) have the same crossing data, i.e., the pairs
(t1, t2) for which fs(t1) = fs(t2) and gs(t1) = gs(t2) is same for all s ∈ [0, R].

Thus if two polynomial knots are strongly P-regular homotopic then their dia-
grams differ from each other only in terms of difference in the nature of crossings
i.e., the diagram of the other polynomial knot can be obtained by changing some
over crossings in first diagram into the under crossings or vice-versa.

Let (f(t), g(t), h(t)) be a good polynomial knot. Let (si, ti) be the param-
eters where there is a crossing, i.e., f(si) = f(ti) and g(si) = g(ti). Let
mi(h) = |h(si)−h(ti)|

|si−ti| . Each mi(h) is a positive real number. Given a polyno-
mial knot t → (f(t), g(t), h(t)) we can compare mi(h) and mj(h) for each i 6= j.
Suppose mi1(h) < mi2(h) < . . . < min(h). Then {i1, i2, . . . , in} defines an order on
the set {1, 2, . . . , n}. In the next proposition we show that it is possible to attain
each order among mi(h) by choosing a suitable good polynomial representation of
a knot diagram.

Proposition 2.6: Let D be a knot diagram of a knot K with n crossings.
Let σ be an order on {1, 2, . . . , n}. Then there exists a good polynomial knot
t 7→ (f(t), g(t), hσ(t)) representing the diagram D. Suppose in this representation
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the crossings occur at parametric pairs of values (si, ti), i = 1, 2, . . . , n. Then the
mi(hσ) = |hσ(si)−hσ(ti)|

|si−ti| satisfy the order σ.

Proof: A knot diagram consists of two things, namely,

1. a generic projection into a plane say XY plane which is a plane curve with
finitely many real ordinary double points

2. at each double point, over/under crossing information.

First, we only look at the projection. This is a real plane curve with finite num-
ber of real ordinary double points. We would like to give a polynomial parametriza-
tion for this curve. Suppose this curve has m local extrema in the x direction.
Consider the plane curve C : (x(t), y(t)) = (tm+1, td) where d is the least positive
integer greater than or equal to [ 2n

m ] and co-prime to m + 1. This curve C has an
isolated singularity at the origin. For such plane curves, there are two important
numbers that remain invariant under any formal isomorphisms of plane curves. The
first one is known as the Milnor number (cf. [2]) denoted by µ and the other is the
δ invariant. For a single component plane curve they satisfy the relation 2δ = µ.
The Milnor number number µ is defined as

µ = dim
C[x, y]

(∂f
∂x , ∂f

∂y )
.

Thus in this case it turns out that the δ invariant is equal to m(d−1)
2 . The δ invariant

of a plane curve which is singular at origin measures the number of double points
that can be created in a neighborhood of the origin. Note that, we have δ ≥ n.
If δ = n, by a result of real algebraic geometry by A’Campo [1] we can deform
the curve C into a new curve C̃ : (x(t), y(t)) = (tm+1 + a1t

m + a2t
p−2 + . . . +

am+1, (1+b0)td +b1t
d−1 + . . .+bd) such that C̃ has all δ = n real nodes near origin.

If δ = n + r, then we can use a result of Daniel Pecker [13] to deform the curve
C : (x(t), y(t)) = (tm+1, td) into a new curve C̃ : (x(t), y(t)) = (tm+1 + a1t

m +
a2t

p−2 + . . . + am+1, (1 + b0)td + b1t
d−1 + . . . + bd) such that C̃ has n real nodes

and r imaginary nodes. By continuity argument, we can choose the coefficients ais
and bis such that the nodes occur in the order they are in the regular projection
of the given knot. Suppose the n crossings occur at the parametric values (s1, t1),
(s2, t2), . . ., (sn, tn) and the crossing data in diagram D is such that in the pairs
(si, ti) the point corresponding to t = si is above the point corresponding to t = ti.
Thus for an over crossing si < ti and for an under crossing ti < si. Choose real
numbers ai and bi for i = 1, 2, . . . , n such that the numbers ai+bi

|si−ti| obey the order
σ. Here we have n − 1 inequations in 2n variables and thus we can find infinitely
many solutions for ai and bi. After choosing ais and bis, we consider a polynomial
hσ(t) = t2n+1 + α1t

2n + α2t
2n−1 + · · ·+ α2nt of degree 2n + 1. We want to choose

the coefficients α1, α2, . . . , α2n such that hσ(si) = ai and hσ(ti) = −bi. Note that
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the values of si and ti are known. Thus these conditions will result into 2n linear
equations in 2n variables α1, α2, . . . , α2n. This system of linear equations will be of
the form

s2n
1 α1 + s2n−1

1 α2 · · ·+ s1α2n = a1 − s2n+1
1

t2n
1 α1 + t2n−1

1 α2 · · ·+ t1α2n = −b1 − t2n+1
1

s2n
2 α1 + s2n−1

2 α2 · · ·+ s2α2n = a2 − s2n+1
2

t2n
2 α1 + t2n−1

2 α2 · · ·+ t2α2n = −b2 − t2n+1
2

...
s2n

n α1 + s2n−1
n α2 · · ·+ snα2n = an − s2n+1

n

t2n
n α1 + t2n−1

n α2 · · ·+ tnα2n = −bn − t2n+1
n

The coefficient matrix of this system has determinant

s1t1s2t2 · · · sntn
∏

i 6=j

(si − sj)(si − tj)(ti − tj).

Here each sis and tis are distinct and also each si 6= tj . By perturbing the coeffi-
cients of the polynomials f(t) and g(t) we can ensure that each si and ti is nonzero.
Thus we can always find a solution for the above system of linear equations. This
polynomial hσ(t) will provide the over/under crossing information as well as mi(hσ)
will satisfy the order σ. Also the polynomial hσ(t) has positive leading coefficient
and its degree is odd. This completes the proof. 2

Our next aim is to show that given a knot diagram of a polynomial knot we
can realize an unknotting sequence of knot diagrams by a one parameter family of
polynomial knots. For that we will first prove the following:

Lemma 2.7: Let p(t) be an even degree polynomial, with leading coefficient pos-
itive, over the field of real numbers. Then there exists some R > 0 such that
p(t) + R > 0 for all t ∈ R.

Proof: Since the degree of p(t) is even and the leading coefficient is positive we
can find a closed interval [a, b] such that p(t) > 0 for all t outside [a, b]. Thus, all
the points where p(t) can be negative lies inside the closed interval [a, b]. Consider
the function q : [a, b] → R defined as q(t) = |p(t)|. q is a continuous function on a
compact set and hence will attain its maxima. Let M be the maximum value of q(t)
over the interval [a, b]. Let R > M . Clearly R > 0. Consider p(t)+R. For all t out-
side [a, b] we certainly have p(t)+R positive. For t ∈ [a, b] we have p(t) ≤ q(t) < R.
Now for those t ∈ [a, b] for which p(t) > 0 there is no problem. Let t0 ∈ [a, b] be
such that p(t0) < 0 say p(t0) = −r. Then q(t0) = r and R > r. Thus R − r > 0,
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i.e., p(t0)+R > 0. Thus we have proved that p(t)+R is always positive for all t ∈ R.

Proposition 2.8: Every polynomial knot is strongly P-regular homotopic to a
polynomial unknot.

Proof: Let ϕ : R ↪→ R3 be a polynomial knot defined as ϕ(t) = (f(t), g(t), h(t)).
We can assume that ϕ is a good polynomial knot, i.e., the map t 7→ (f(t), g(t))
is an immersion and the polynomial h(t) has positive coefficient with deg(h(t))
is odd. For each s ∈ R consider a family of maps Φs : R ↪→ R3 as Φs(t) =
(f(t) + s, g(t) + s, h(t) + s2t). The proposition now follows from the following two
claims.

Claim 1. For each s ∈ R the map φs(t) = (f(t) + s, g(t) + s, h(t) + s2t) is an im-
mersion and the maps t 7→ (f(t) + s, g(t) + s) have the same crossing data as that
of t 7→ (f(t), g(t)).

For each s the derivative map is φ′s(t) = (f ′(t), g′(t), h′(t) + s2) and as
φ(t) = (f(t), g(t), h(t)) is an embedding with t 7→ (f(t), g(t)) an immersion it follows
that t 7→ (f(t)+ s, g(t)+ s) is an immersion. Also by solving algebraically for cross-
ings we can see that they have the same crossing data as that of t 7→ (f(t), g(t)).
This proves Claim 1.

Claim 2. There exists some real number R ≥ 0 such that for s ≥ R the maps
φs : R ↪→ R3 represent the trivial knot.

Consider the map t 7→ (f(t) + s, g(t) + s, h(t) + s2t). If h′(t) is always positive,
i.e., h(t) is monotonically increasing then the knot given by t 7→ (f(t), g(t), h(t)) is
itself a trivial knot and hence there is nothing to prove as we can take R = 0.

Consider the case when h′(t) is not always positive. Now, here we have assumed
that the degree of the polynomial h(t) is odd. Let h1(t) = h′(t). Here h1(t) is an
even degree polynomial with positive leading coefficient. By Lemma 2.7, we can find
some M > 0 such that h1(t)+M > 0 for all t ∈ R. Consider hs(t) = h(t)+ s2t. Let
R =

√
M. Then for s ≥ R we have h′s(t) > 0 i.e., hs(t) is monotonically increasing

for s ≥ R. Hence the knot given by t 7→ (f(t) + s, g(t) + s, h(t) + s2t) is a trivial
knot for s ≥ R. This proves Claim 2. 2

This proof demonstrates that we have a continuous map Φ : R × [0, R] −→
R3 such that Φ(t, 0) = (f(t), g(t), h(t)), is the given knot and Φ(t, R) = (f(t) +
R, g(t) + R, h(t) + R2t) is a trivial knot and for each s ∈ [0, R] the map Φ(t, s) =
(f(t) + s, g(t) + s, h(t) + s2t) is an immersion. The values of s for which Φ(t, s) =
(f(t)+ s, g(t)+ s, h(t)+ s2t) fails to be an embedding are called the singular values.

Remark 2.9:
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1. Let D be a knot diagram with n crossings. Then for each order σ among
{1, 2, . . . , n} by Proposition 2.6, we have a polynomial knot Pσ : t →
(f(t), g(t), hσ(t)) representing the diagram D in which mi(hσ) (defined above)
satisfy the order σ. Now, for each Pσ by Proposition 2.8, there exists a real
number Rσ > 0 such that the maps defined by t → (f(t)+ s, g(t)+ s, hσ(t)+
s2t) are unknots for s ≥ Rσ.

2. By Proposition 2.8 it follows that if the given polynomial knot is non trivial
then we can obtain a polynomial unknot with the same crossing data whose
diagram is obtained by switching some of the crossings of the given knot
from over crossing to under crossing or vice versa. As it is a continuous
deformation, for some finite number of values of s ∈ [0, R] the maps Φ(−, s) :
R −→ R3 must be “ singular knots ” , i.e., must have double points.

3. Singularity Index

Definition 3.1: Given a knot diagram DK the least number of crossing changes
required to convert it into a knot diagram of an unknot is called the unknotting
number of that diagram denoted by u(DK).

Definition 3.2: The unknotting number of a knot K is defined as the minimal
number of crossing changes required among all possible diagrams of K to be able
to convert it into the unknot. It is a knot invariant and is denoted by u(K).

Definition 3.3: Let a polynomial knot φ be defined by φ(t) = (f(t), g(t), h(t)),
with say n crossings. Let R be the least positive real number such that the map
Φs : R −→ R3 defined by t 7→ (f(t) + s, g(t) + s, h(t) + s2t) represents a trivial knot
for s ≥ R. Then the minimum number of singular values, i.e., the values of s ∈ [0, R]
for which the map Φs is a singular knot, is defined as the Singularity index of the
polynomial knot φ denoted by SIφ.

Definition 3.4: Let D be a knot diagram with n crossings. We define the Singu-
larity index SI(D) of the diagram D as:

SI(D) = min{SIφ|φ is a polynomial knot that represents D}.
Remark 3.5: For each order σ on {1, 2, . . . , n} let Pσ : t → (f(t), g(t), hσ(t))
denote a polynomial knot that represents the diagram D and for which the mi(hσ)
defined in Proposition 2.6 satisfy the order σ. It is easy to check that

SI(D) = min{SIPσ}.
Since there are finitely many σ we can easily compute SI(D) for a given knot

diagram D.
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Definition 3.6: The minimum value of all SI(D), minimum taken over all knot
diagrams that represent a knot K is defined as the singularity index of the knot K
and is denoted by SI(K).

Remark 3.7:

1. The singularity index SI(K) of a knot is a knot invariant.

2. The singularity index of the unknot is zero.

3. For any nontrivial knot K, SI(K) ≥ 1.

Theorem 3.8: The singularity index of a knot diagram is less than or equal to its
unknotting number.

Proof. Let K be a knot. Let “ φ : R → R3 defined by φ(t) = (f(t), g(t), h(t))”
be a polynomial representation of K and DK is the knot diagram of K represented
by φ. From Proposition 2.8 φ is strongly-P-regular homotopic to a polynomial
unknot. Let R be the smallest real number such that the polynomial knot φR

K

defined by φR
K(t) = (f(t) + R, g(t) + R, h(t) + R2t) has a diagram DφR(K) of an

unknot. Clearly DφR(K) is obtained by making some crossing changes in DK . Let
(si, ti), si < ti i = 1, 2, . . . , N be the parametric values for which the crossings
occur, i.e., f(si) = f(ti) and g(si) = g(ti). Suppose for some (si, ti) we have
h(si) < h(ti), i.e, (si, ti) is an under crossing. Then h(si) + s2si = h(ti) + s2ti
will not have any real solution. On the other hand if for some (sj , tj) we have
h(sj) > h(tj) then the equation h(sj) + s2sj = h(tj) + s2tj will have a unique real
solution s0 ∈ [0, R]. In fact s2

0 = h(t1)−h(t2)
t2−t1

. If we take s > s0 then in the embedding
φs : t → (f(t)+ s, g(t)+ s, h(t)+ s2t) we will have h(sj)+ s2sj < h(tj)+ s2tj which
means (sj , tj) is an under crossing in this embedding. Thus in the transformation
from φ to φs the crossing (sj , tj) has been switched from an over crossing to an
under crossing. If our polynomial embedding represents a symmetric diagram of
the knot in the sense that if (−sj , tj) is a crossing the (−tj , sj) is also a crossing,
then in this transformation for s > s0 both the crossings corresponding to (−sj , tj)
and (−tj , sj) will switch from over to under crossing. Thus, in the P-regular ho-
motopy inside the interval [0, R] each singular knot indicates at least one crossing
change in the diagram Dφ(K) (in case of symmetric diagrams there may be two
crossing changes taking place). Thus the number of singular knots before arriving
at a diagram of an unknot is less than or equal to the number of crossing changes
occurred before getting a knot diagram of an unknot. Thus the singularity index
of the diagram DK is less than or equal to the unknotting number u(DK) of the
diagram DK . This completes the proof. 2

4. Examples
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In this section, we compute the polynomial singularity index for few polynomial
knots. This gives an estimate for the singularity index of these knots. We can
compare the singularity index with the unknotting numbers.

1. Let us consider a polynomial representation of the trefoil knot which is the
torus knot of type (2, 3) as t 7→ (t3 − 3t, t4 − 4t2, t5 − 10t). The knot diagram
associated to this representation is shown in Figure 1.

Let us compute the singularity index of this polynomial knot. Consider the
immersion (t, s) 7→ (t3−3t+s, t4−4t2+s, t5−10t+s2t, s). We can see that for
s2 > 10, i.e., for s >

√
10 the maps t 7→ (t3−3t+s, t4−4t2 +s, t5−10t+s2t)

are trivial knots. To compute the double points of the immersion (t, s) 7→
(t3−3t+s, t4−4t2+s, t5−10t+s2t, s) we consider (t31−3t1+s1, t

4
1−4t21+s1, t

5
1−

10t1 +s2
1t1, s1) = (t32−3t2 +s2, t

4
2−4t22 +s2, t

5
2−10t2 +s2

2t2, s2). Then clearly
s1 = s2. Then (t31−3t1+s, t41−4t21+s) = (t32−3t2+s, t42−4t22+s) implies that
(t31−3t1, t

4
1−4t21) = (t32−3t2, t

4
2−4t22), which upon solving gives us three pairs

of values for (t1, t2) which are (−1.93185, 0.517638), (−1.73205, 1.73205) and
(−0.517638, 1.93185). Thus the pairs (t1, s) and (t2, s) may give us double
points for some values of s. For finding these values of s we find the roots of
the equation (t51 − 10t1 + s2t1)− (t52 − 10t2 + s2t2) = 0 for the above pairs of
(t1, t2). For (t1, t2) = (−1.93185, 0.517638) the above equation turns out to
be

−2.44939205− 2.449488000s2 = 0

which is never zero for any real value of s. For (t1, t2) = (−1.73205, 1.73205)
the equation becomes

3.464158140− 3.464100000s2 = 0

which has one real solution namely s = 1.000008392 in the interval [0,
√

10].
Similarly again for (t1, t2) = (−0.517638, 1.93185) the equation is

−2.44939205− 2.449488000s2 = 0
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Figure 1

which is never zero for any real value of s. Thus the map (t, s) 7→ (t3 −
3t + s, t4 − 4t2 + s, t5 − 10t + s2t, s) has one double point corresponding
to (−1.73205, 1.000008329) and (1.73205, 1.000008329). Thus the singularity
index of the polynomial knot t 7→ (t3−3t, t4−4t2, t5−10t) is 1. This is same as
the unknotting number of Trefoil. We can clearly see that for s > 1.00008392
the polynomial knot t 7→ ((t3− 3t+ s, t4− 4t2 + s, t5− 10t+ s2t) has diagram
of an unknot as shown in Figure 2.
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Figure 2

2. Consider a polynomial representation of the figure eight knot given by t 7→
(t(t − 2)(t + 2), (t − 2.1)(t + 2.1)t3,−12.8064t + 22.4679t3 − 8.90928t5 + t7).
It has a knot diagram as shown in Figure 3.

First we find that the double points in the projection t → t(t− 2)(t + 2), (t−
2.1)(t + 2.1)t3) occur at (t1, t2) = (−2.25, 1.57), (−2.10, .221), (−1.57, 2.25)
and (−.221, 2.10). Consider the deformation φs = t 7→ (t(t−2)(t+2)+s, (t−
2.1)(t+2.1)t3+s,−12.8064t+22.4679t3−8.90928t5+t7+s2t). we see that for
s ≥ 1.5 each φs is an unknot (Figure 4). For each (t1, t2) we write down the
equations to find the singular value. In this case the (t1, t2) = (−2.25, 1.57)
and (−1.57, 2.25) will give identical equations with no real solution. Similarly
the other two pairs give identical equation with one real solution s = 1.48
and hence there is only one singular knot corresponding to s = 1.48. Thus the
singularity index of this diagram is 1 which is same as its unknotting number.



282 Rama Mishra

Figure 3

Figure 4
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3. Consider the knot 51 in the Rolfsen’s table. We have a polynomial representa-
tion t 7→ (t3−4t, (t2−1.2)(t2−2.25)(t2−3.9)(t2−4.85), 120.76616719796145t−
162.68665250562293t3 + 75.13982708378909t5 − 14.48957349775025t7 + t9)
which has a knot diagram as shown in Figure 5.

Figure 5

It has five crossings corresponding to pair of parameters: (−2.29267, .906039),
(−2.23355, 1.62515), (−2, 2), (−1.62515, 2.2355) and (−.906039, 2.29267). At
each pair if we solve for s which makes the map t 7→ (t3−4t+s, (t2−1.2)(t2−
2.25)(t2− 3.9)(t2− 4.85)+ s, 120.76616719796145t− 162.68665250562293t3 +
75.13982708378909t5 − 14.48957349775025t7 + t9 + s2t) a singular knot we
obtain just one solution s = 1.21393. Thus the singularity index is 1. How-
ever if we plot the diagram for s > 1.21393 we see that two crossings corre-
sponding to (−2.23355, 1.62515) and (−1.62515, 2.2355) are switched (Figure
6 (A))from over crossing to under crossing and it is an unknot as shown in
Figure 6 (B). In this example the singularity index of the diagram is less than
the unknotting number.
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A

B

Figure 6

In the above examples there was just one solution for s if we compute at all
the crossings which makes φs a singular knot. In the next example we see
that the singularity index may be smaller than the total number of values
of s for which φs is a singular knot. This is due to the fact that the knot
diagram for φs for s > si may represent an unknot for s < si+1 where si and
si+1 are two consecutive singular values.
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4. Consider the knot 52 from Rolfsen’s table. We have a polynomial representa-
tion t 7→ ((t− 2)(t + 4)(t2 − 9), t(t2 − 6)(t2 − 15), t(t + 3.9)(t + 3.5)(t + 2)(t +
1)(t− 2)(t− 2.8)(t− 3.2)(t− 3.65)) which gives a knot diagram as in Figure
7.

Figure 7

Here if we perform the calculations for singular values we obtain two solutions
namely 9.69 and 15.12. However, the knot diagram for φs for 9.69 < s < 15.12
represents an unknot if we perform Reidemeister Moves as shown in Figure
8.
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Here, we note that in this polynomial knot m4(h) < m2(h). In case we
had a polynomial representation of the same diagram with m2 < m4 then
the polynomial singularity index will be 2. Considering the minimum, the
singularity index of this diagram is 1.

Figure 8

5. Consider the polynomial knot t 7→ ((t2 − 12)(t2 − 11), t(t2 − 21)(t2 −
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7),−48278.6t + 46195.t3 − 12497.7t5 + 1336.22t7 − 61.0393t9 + t11). This
represents the long 62 knot on Rolfsen’s table. A three dimensional plot from
maple is shown in Figure 9.

In this knot the crossings occur at parametric pair of values in order at
(−4.73, −.778), (−4.58, 4.58), (−4.36, 1.990), (−2.64, 2.64), (−1.990, 4.36)
and (.77, 4.73). In this there are only two singular knots corresponding to the
second crossing at (−4.58, 4.58) and the fourth crossing at (−2.64, 2.64). Both
of them are over crossings. Here we can check that m2 < m4. The singular
knots corresponding to (−4.58, 4.58) and (−2.64, 2.64) are at s = 42.58 and
s = 92.73 respectively. The embedding φs(t) = ((t2 − 12)(t2 − 11) + s, t(t2 −
21)(t2 − 7) + s,−48278.6t + 46195.t3 − 12497.7t5 + 1336.22t7 − 61.0393t9 +
t11 + s2t) for 42.58 < s < 92.73 has the second crossing corresponding to
(−4.58, 4.48) switched from under crossing to over crossing as shown in Fig-
ure 10. This can be shown to be equivalent to unknot. Thus essentially there
is just one singular knot before the diagram transforms into a diagram of
an unknot. Hence the polynomial singularity index of this polynomial knot
is 1 and therefore the singularity index of 62 knot is 1 which is same as its
unknotting number.

Figure 9
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Figure 10

6. Let us consider a polynomial knot t 7→ (t3 − 17t, t2(t2 − 18)(t2 − 4.15)(t2 −
22.09), t(t2 − (4.6)2)(t2 − (4.35)2)(t2 − (4.18)2)(t2 − 9)(t2 − (1.8)2)(t2 −
(0.75)2)) = (f(t), g(t), h(t)) (say), which represents a knot diagram of the
74 knot in the Rolfsen’s knot table, shown in Figure 11.
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Figure 11

Let us compute the polynomial singularity index of this polynomial knot.
Here the maps t 7→ (t3 − 17t + s, t2(t2 − 18)(t2 − 4.15)(t2 − 22.09) + s, t(t2 −
(4.6)2)(t2−(4.35)2)(t2−(4.18)2)(t2−9)(t2−(1.8)2)(t2−(0.75)2)+s2t) are triv-
ial knots for s2 ≥ 999999, i.e., for s ≥ 999.99. To compute the double points of
the associated immersion, we proceed as in the earlier example and find that
the projection t 7→ (t3−17t, t2(t2−18)(t2−4.15)(t2−22.09)) has double points
for (t1, t2) = (−4.75906, 2.2632), (−4.56165, 1.10036), (−4.25783, 0.284139),
(−4.12311, 4.12311), (−2.2632, 4.75906), (−1.10036, 4.56165), (−0.284139,
4.25783).
Thus for these values of (t1, t2) the equations (h(t1)− h(t2) + s2(t1 − t2) = 0
are respectively obtained as:

−1.005332368× 106 − 7.02226s2 = 0 (1)
1.071471515× 105 − 5.66201s2 = 0 (2)
−42698.78494− 4.541969s2 = 0 (3)

56367.35336− 8.24622s2 = 0 (4)
−1.005332368× 106 − 7.02226s2 = 0 (5)

1.071471515× 105 − 5.66201s2 = 0 (6)
−42698.78494− 4.541969s2 = 0. (7)

We see that the equations (1) and (5) are identical and have no real solution.
Similarly the equations (3) and (7) are identical and have no real solution.
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The equations (2) and (6) are identical with real solution s = 137.5640644
inside [0, 999.99]. Also the equation (4) has one real solution s = 82.67731483
inside [0, 999.99].

Thus in the one parameter family of maps t 7→ (t3 − 17t + s, t2(t2 − 18)(t2 −
4.15)(t2 − 22.09) + s, t(t2 − (4.6)2)(t2 − (4.35)2)(t2 − 4.18)2)(t2 − 9)(t2 −
(1.8)2)(t2 − (0.75)2) + s2t) there are two singular knots corresponding to
s = 82.67731483 and s = 137.5640644. Hence the singularity index of this
polynomial knot is 2. In this example we see that in the transformation from
this knot diagram to an unknot diagram three crossings have been switched.
However, it is known that the unknotting number of 74 knot is 2.

7. Let us consider a polynomial knot given by t 7→ (t5 − 5.5t3 + 4.5t,−7.8375 +
14t2 − 7.35t4 + t6, 10.4337t− 18.5762t3 + 8.13297t5 − t7) that represents the
knot diagram of the knot 819 as in Rolfsen’s table shown in Fig 12. It is a
torus knot of type (3, 4).

Figure 12

Let us compute the polynomial singularity index of this polynomial knot.

Here the maps t 7→ (t5 − 5.5t3 + 4.5t + s,−7.8375 + 14t2 − 7.35t4 +
t6 + s,−10.4337t + 18.5762t3 − 8.13297t5 + t7 + s2t) are trivial knots for
s ≥ 6. The double points of the immersion t 7→ (t5 − 5.5t3 + 4.5t +
s,−7.8375 + 14t2 − 7.35t4 + t6 + s) are at the parametric values (t1, t2) =
(−2.17, 1.24), (−2.15,−.829), (−2.12, 2.06), (−2.06, .54), (−1.24, 2.17),
(−2.17, 1.24), (−1, 1), (−.54, 2.06) and (.82, 2.15).
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Thus for these values of (t1, t2) the equations (h(t1)− h(t2) + s2(t1 − t2) = 0
are respectively obtained as:

5.56516− 3.41s2 = 0 (8)
1.89484− 1.321s2 = 0 (9)

−4.32508− 4.18s2 = 0 (10)
−6.45593− 2.6s2 = 0 (11)
5.56516− 3.41s2 = 0 (12)

2.01906− 2s2 = 0 (13)
−6.45593− 2.6s2 = 0 (14)

1.89484− 1.321s2 = 0. (15)

We see that the equations (10), (11) and (14) do not have any real solutions.
Also equation (8) is identical with equation (12) and equation (9) is identical
with equation (15) and equation (13) have real solutions. Thus we have
only three distinct equations which have real solution, one solution each in
the interval [0, 6] giving the singularity index of this polynomial knot to be 3.
This is same as the unknotting number of torus knot of type (3, 4) by Milnor’s
theorem.

5. Conclusion

This method provides us with an algorithm for obtaining a lower bound for
unknotting number of a knot diagram if we have polynomial representations of the
diagram. Looking at the examples discussed above, it is clear that in this method
only the over crossings are switched to the under crossings. Thus if there are k over
crossings, there are possible k! ways to order them. For each order σ we can find a
polynomial hσ that realizes the order and in the deformation family corresponding
to this representation after each singular knot when a crossing is switched we can
examine the diagram and test for unknot by using the invariants that are unknot
detectors such as Khovanov Homology. Thus we have to test for only k! deformation
families. The one with least number of singular knots before arriving at a diagram
for trivial knot gives the singularity index and the unknotting sequence. One can
write a computer program for it.
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