KYUNGPOOK Math. J. 54(2014), 263-269 http://dx.doi.org/10.5666/KMJ.2014.54.2.263

Reflexive Index of a Family of Sets

Zhao Dongsheng

Mathematics and Mathematics Education, National Institute of Education, Nanyang Technological University, Singapore e-mail: dongsheng.zhao@nie.edu.sg

ABSTRACT. As a further study on reflexive families of subsets, we introduce the reflexive index for a family of subsets of a given set and show that the index of a finite family of subsets of a finite or countably infinite set is always finite. The reflexive indices of some special families are also considered.

Given a set X, let $\operatorname{Sub}(X)$ denote the set of all subsets of X and $\operatorname{End}(X)$ denote the set of all endomappings $f: X \longrightarrow X$. For any $\mathcal{A} \subseteq \operatorname{Sub}(X)$ and $\mathcal{F} \subseteq \operatorname{End}(X)$ define

 $Alg(\mathcal{A}) = \{ f \in End(X) : f(A) \subseteq A \text{ for all } A \in \mathcal{A} \}, \\ Lat(\mathcal{F}) = \{ A \in Sub(X) : f(A) \subseteq A \text{ for all } f \in \mathcal{F} \}.$

A family $\mathcal{A} \subseteq \operatorname{Sub}(X)$ is called *reflexive* if $\mathcal{A} = \operatorname{Lat}(\operatorname{Alg}(\mathcal{A}))$, or equivalently, $\mathcal{A} = \operatorname{Lat}(\mathcal{F})$ for some $\mathcal{F} \subseteq \operatorname{End}(X)$.

As was shown in [9], $\mathcal{A} \subseteq \operatorname{Sub}(X)$ is reflexive iff it is closed under arbitrary unions and intersections and contains the empty set and X. The reflexive families $\mathcal{F} \subseteq \operatorname{End}(X)$ were also introduced and characterized as those subsemigroups \mathcal{L} of $(\operatorname{End}(X), \circ)$ such that \mathcal{L} is a lower set and contains all existing suprema of subsets of \mathcal{L} with respect to a naturally defined partial order on $\operatorname{End}(X)$. The similar work in functional analysis is on the reflexive invariant subspace lattices and reflexive operator algebras [1-6].

For any $\mathcal{A} \subseteq \operatorname{Sub}(X)$, let $\hat{\mathcal{A}} = \operatorname{Lat}(\operatorname{Alg}(\mathcal{A}))$. Then $\hat{\mathcal{A}}$ is the smallest family of subsets containing \mathcal{A} which is closed under arbitrary unions and intersections containing empty set \emptyset and X, and $\hat{\mathcal{A}}$ is finite if \mathcal{A} is finite. Furthermore, $\hat{\mathcal{A}} = \operatorname{Lat}(\mathcal{F})$, where $\mathcal{F} = \operatorname{Alg}(\mathcal{A})$.

It is, however, still not known whether for any finite family \mathcal{A} there is a finite $\mathfrak{F} \subseteq \operatorname{End}(X)$ such that $\hat{\mathcal{A}} = \operatorname{Lat}(\mathfrak{F})$.

In this short paper, we shall answer the above problem. It will be shown that the answer is positive if and only if X is a finite or countably infinite set. For

Received July 19, 2012; accepted April 24, 2013.

2010 Mathematics Subject Classification: 54C05, 54C60, 54B20, 06B99.

263

Key words and phrases: reflexive families, reflexive index, endomapping.

D. Zhao

any family \mathcal{A} of subsets of a set, we define a cardinal $\kappa(\mathcal{A})$, which, in a certain sense, reflects how the sets in \mathcal{A} are interrelated. This cardinal will be called the reflexive index of \mathcal{A} . The reflexive indices of some special families are computed. For instance, we show that if \mathcal{A} is a finite chain of subsets of $I\!N$ (the set of all natural numbers) with more than one member, then $\kappa(\mathcal{A}) = 2$.

Definition 1. Let \mathcal{A} be a family of subsets of a set X. The *reflexive index* of \mathcal{A} is defined as

$$\kappa_X(\mathcal{A}) = inf\{|\mathcal{F}| : \mathcal{F} \subseteq \operatorname{End}(X), \ \hat{\mathcal{A}} = \operatorname{Lat}(\mathcal{F})\},\$$

where $|\mathcal{F}|$ is the cardinal of \mathcal{F} .

We shall write $\kappa(\mathcal{A})$ for $\kappa_X(\mathcal{A})$ if the set X is clearly assumed.

If $C \subseteq X$ and $f \in End(X)$ such that $f(C) \subseteq C$, then we say that C is invariant under f. Thus Lat($\{f\}$) is the set of all subsets which are invariant under f. Also note that $Lat(\mathcal{F}) = \bigcap \{Lat(\{f\}) : f \in \mathcal{F}\}\$ for any $\mathcal{F} \subseteq End(X)$.

In the following we shall use $I\!N$ to denote the set of all natural numbers.

Remark 2.

(1) For any $\mathcal{A} \subseteq \text{Sub}(X)$, $\hat{\mathcal{A}} = \hat{\mathcal{A}}$, thus $\kappa_X(\hat{\mathcal{A}}) = \kappa_X(\mathcal{A})$.

(2) For any $g \in End(X)$, where X is an infinite set, $Lat(\{g\})$ is an infinite family. To see this, consider any $a \in X$. If $\{g^k(a) : k \in \mathbb{N}\}$ is an infinite set, then $g^k(a) \neq g^i(a)$ whenever $k \neq i$. In this case, $\{\{g^i(a) : i \geq k\} : k \in \mathbb{N}\}$ is an infinite subfamily of Lat($\{g\}$) (g^k is the composition of k copies of g). Now assume that for each $a \in X$, $\{g^k(a) : k \in \mathbb{N}\}$ is a finite set, then there are infinitely many sets of the form $\{g^k(a): k \in \mathbb{N}\}\ (a \in X)$, each of them is a member of $\text{Lat}(\{g\})$. Therefore $Lat(\{g\})$ is infinite.

Lemma 3. Let X be a nonempty set.

(1) If X is a countably infinite set, then there are two mappings

$$\mu_X^0, \, \mu_X^1 : X \longrightarrow X$$

such that for any nonempty $B \subseteq X$, if $\mu_X^0(B) \subseteq B$ and $\mu_X^1(B) \subseteq B$ then B = X. (2) If X is a finite set, there is one mapping $\mu_X^0 : X \longrightarrow X$ such that for any nonempty $B \subseteq X$, $\mu_X^0(B) \subseteq B$ implies B = X.

Proof. (1) If $X = \{a_1, a_2, \dots\}$ is a countably infinite set, define $\mu_X^0(a_i) = a_{i+1}$ and $\mu_X^1(a_i) = a_1$ for each *i*. Then μ_X^0 and μ_X^1 satisfy the requirement.

(2) If $X = \{a_1, a_2, \dots, a_n\}$ is a finite set, define $\mu_X^0(a_i) = a_{i+1} (1 \le i < n)$ and $\mu^0_X(a_n) = a_1$. Then $B \subseteq X$ and $\mu^0_X(B) \subseteq B$ will imply $B = \emptyset$ or B = X.

Proposition 4. Let X be a nonempty set.

(1) If X is countably infinite, $\kappa_X(\{\emptyset, X\}) = 2$. (2) If X is a finite set, $\kappa_X(\{\emptyset, X\}) = 1$.

Proof. First, note that the family $\{\emptyset, X\}$ is closed under arbitrary intersections and unions, so it is reflexive, i.e. $Lat(Alg(\{\emptyset, X\})) = \{\emptyset, X\}$ (Theorem 1 of [9]).

264

The statement (2) clearly follows from Lemma 3(2).

To prove (1), by Lemma 3(1), we have $\kappa_X(\{\emptyset, X\}) \leq 2$. Also, by Remark 2 (2), for any $f \in \text{End}(X)$ the set $\text{Lat}(\{f\})$ is infinite, implying $\{\emptyset, X\} \neq \text{Lat}(\{f\})$. Hence $\kappa_X(\{\emptyset, X\}) = 2$.

Proposition 5. If X is a noncountable infinite set, then $\kappa_X(\{\emptyset, X\}) = |X|$, where |X| is the cardinal of X.

Proof. Let $\emptyset \neq \mathfrak{F} \subseteq \operatorname{End}(X)$ and $|\mathfrak{F}| < |X|$. Take \mathfrak{F}^* to be the subsemigroup of $(\operatorname{End}(X), \circ)$ generated by \mathfrak{F} , where \circ is the composition operation. If \mathfrak{F} is finite, then \mathfrak{F}^* is finite or countably infinite. Since X is uncountable it follows that $|\mathfrak{F}^*| < |X|$. If \mathfrak{F} is infinite, then $|\mathfrak{F}^*| = |\mathfrak{F}| < |X|$. Chose one element $a \in X$ and let $\mathfrak{F}^*a = \{f(a) : f \in \mathfrak{F}^*\}$, called the orbit of a under \mathfrak{F} . Clearly \mathfrak{F}^*a is a member of Lat(\mathfrak{F}). However, $|\mathfrak{F}^*a| \leq |\mathfrak{F}^*| < |X|$, implying $\mathfrak{F}^*a \neq X$. Also as $\mathfrak{F}^*a \neq \emptyset$, so Lat(\mathfrak{F}) $\neq \{\emptyset, X\}$. It thus follows that $\kappa_X(\{\emptyset, X\}) \geq |X|$. Now consider $\mathcal{K} = \{f_a : a \in X\} \subseteq \operatorname{End}(X)$, where $f_a : X \longrightarrow X$ is the constant mapping that sends every $x \in X$ to a. Then for any nonempty set $B \subseteq X$, if $f_a(B) \subseteq B$ for all $a \in X$, then X = B. Therefore Lat(\mathfrak{K}) = $\{\emptyset, X\}$ and so $\kappa_X(\{\emptyset, X\}) \leq |\mathfrak{K}| = |X|$. All these show that $\kappa_X(\{\emptyset, X\}) = |X|$.

Now we prove the main result of this paper.

Theorem 6. Let X be a finite or countably infinite set. Then for any finite family $\mathcal{A} \subseteq Sub(X), \kappa(\mathcal{A})$ is finite.

Proof. Since the conclusion is clearly true if X is a finite set, we only give the proof for countably infinite sets X. To simplify the argument we take $X = \mathbb{N}$ (the set of all natural numbers) and denote $\kappa_N(\mathcal{F})$ simply by $\kappa(\mathcal{F})$. Without lose of generality, we assume that $\mathbb{N} \in \mathcal{A}$. By rearranging, if necessary, we can let $\mathcal{A} = \{A_1, A_2, \dots, A_m\}$ such that $A_1 = \mathbb{N}$ and j > i if $A_j \subset A_i$ (however, j > i need not imply $A_j \subset A_i$). Let $\Theta = \{(i_1, i_2, ..., i_k) : 1 \leq i_1 < i_2 < \cdots < i_k \leq m, 1 \leq k \leq m\}$. For each $\sigma = (i_1, i_2, ..., i_k) \in \Theta$, define $X_{\sigma} = \bigcap_{t=1}^k A_{i_t} - \bigcup \{A_s : s \neq i_t, t = 1, 2, \cdots, k\}$. If $\sigma = (i_1, i_2, ..., i_k) \in \Theta$, we call each $i_t, 1 \leq t \leq k$ a component of σ .

For each $\sigma \in \Theta$, we assume that $X_{\sigma} = \{a_1^{\sigma}, a_2^{\sigma}, \cdots\}$ such that $a_1^{\sigma} < a_2^{\sigma} < \cdots$ when $X_{\sigma} \neq \emptyset$.

For $\sigma_1 = (s_1, s_2, \cdots, s_k), \ \sigma_2 = (t_1, t_2, \cdots, t_l) \in \Theta$, define $\sigma_1 < \sigma_2$ if $\{t_1, t_2, \cdots, t_l\} \subset \{s_1, s_2, \cdots, s_k\}$.

- It's easy to see that the following statements are true:
- (a) X_{σ} and X_{β} are disjoint if $\sigma \neq \beta$;
- (b) for each $A_i \in \mathcal{A}$, $A_i = \bigcup \{ X_\sigma : i \text{ is a component of } \sigma \};$
- (c) for each $\sigma = (i_1, i_2, \cdots, i_k) \in \Theta$,

$$\bigcap \{A_{i_t} : t = 1, 2, \cdots, k\} = \bigcup \{X_{\beta} : \beta \in \Theta, \beta \le \sigma\}.$$

Now let $f^0 : \mathbb{N} \longrightarrow \mathbb{N}$ be a mapping such that $f^0|_{X_{\sigma}} = \mu^0_{X_{\sigma}}$ as constructed in the proof of Lemma 3 for each set X_{σ} (note that $X'_{\sigma}s$ are disjoint sets and their union is \mathbb{N}). Let $f^1 : \mathbb{N} \longrightarrow \mathbb{N}$ be the mapping such that $f^1(x) = a_1^{\sigma}$ for each $x \in X_{\sigma}$.

For any $\sigma = (s_1, s_2, \dots, s_k) > \beta = (t_1, t_2, \dots, t_m)$ define $f_{\sigma,\beta} : \mathbb{N} \longrightarrow \mathbb{N}$, if X_{σ} and X_{β} are nonempty, as follows:

$$f_{\sigma,\beta}(x) = \begin{cases} x, & \text{if } x \notin X_{\sigma}, \\ a_1^{\sigma}, & \text{if } x \in X_{\sigma} - \{a_1^{\sigma}\}, \\ a_1^{\beta}, & \text{if } x = a_1^{\sigma}. \end{cases}$$

Now consider the finite family $\mathcal{F} = \{f^0, f^1\} \bigcup \{f_{\sigma,\beta} : \sigma, \beta \in \Theta, \sigma > \beta, X_{\sigma} \neq \emptyset, X_{\beta} \neq \emptyset\}.$

(1) Let $A_i \in \mathcal{A}$. By above (a) and (b), A_i is a disjoint union of some $X'_{\sigma}s$. Since $f^0(X_{\sigma}) \subseteq X_{\sigma}, f^1(X_{\sigma}) \subseteq X_{\sigma}$, thus $f^0(A_i) \subseteq A_i$ and $f^1(A_i) \subseteq A_i$.

Now let $\sigma, \beta \in \Theta$ such that $\sigma > \beta$. If $x \in A_i$ and $x \notin X_{\sigma}$ then $f_{\sigma,\beta}(x) = x \in A_i$. If $x \in X_{\sigma}$, then *i* is a component of σ , so *i* is also a component of β . Now $f_{\sigma,\beta}(x) \in X_{\sigma}$ or $f_{\sigma,\beta}(x) \in X_{\beta}$. But $X_{\sigma}, X_{\beta} \subseteq A_i$, so $f_{\sigma,\beta}(x) \in A_i$, therefore $f_{\sigma,\beta}(A_i) \subseteq A_i$. It follows that $\mathcal{A} \subseteq \text{Lat}(\mathcal{F})$. Then $\text{Alg}(\mathcal{A}) \supseteq \text{Alg}(\text{Lat}(\mathcal{F}))$ and so $\hat{\mathcal{A}} = \text{Lat}(\text{Alg}(\mathcal{A})) \subseteq \text{Lat}(\text{Alg}(\text{Lat}(\mathcal{F}))) = \text{Lat}(\mathcal{F})$, the last equation holds for any \mathcal{F} (see Lemma 1(3) of [9]).

(2) Given any $C \subseteq \mathbb{N}$ such that $C \in \operatorname{Lat}(\mathcal{F})$, we show that $C \in \hat{\mathcal{A}} = \operatorname{Lat}(\operatorname{Alg}(\mathcal{A}))$. First, if $C \cap X_{\sigma} \neq \emptyset$, then there is a point $x \in C \cap X_{\sigma}$, so as $f^1 \in \mathcal{F}$, $f^1(x) = a_1^{\sigma} \in C$. Hence $a_2^{\sigma} = f^0(a_1^{\sigma}) \in C$, $a_3 = f^0(a_1^{\sigma}) \in C$, etc. It then follows that $X_{\sigma} \subseteq C$. Now if $\beta < \sigma$, then $a_1^{\beta} = f_{\sigma,\beta}(a_1^{\sigma}) \in C$, so $X_{\beta} \cap C \neq \emptyset$, therefore we also can deduce that $X_{\beta} \subseteq C$. For any element $x \in C$, there exists $\gamma = (i_1, i_2, \cdots, i_k)$ such that $x \in A_{i_t}$ for each $t = 1, 2, \cdots, k$ and $x \notin A_j$ for all $j \notin \{i_1, i_2, \cdots, i_k\}$. Then $x \in X_{\gamma}$. In addition, $X_{\gamma} \subseteq C$ because $x \in X_{\gamma} \cap C$ which implies $X_{\gamma} \cap C \neq \emptyset$. By property (c), $\bigcap \{A_{i_t} : t = 1, 2, \cdots, k\} = \bigcup \{X_{\beta} : \beta \leq \gamma\} \subseteq C$. In addition, $x \in \bigcap \{A_{i_t} : t = 1, 2, \cdots, k\} \in \hat{A}$ (\hat{A} is closed under arbitrary intersections and each $A_i \in A$). All these show that C is a union of members of \hat{A} , thus $C \in \hat{A}$ because \hat{A} is closed under arbitrary unions. Hence $\operatorname{Lat}(\mathcal{F}) \subseteq \hat{A}$.

The combination of (1) and (2) implies that $\text{Lat}(\mathcal{F}) = \hat{\mathcal{A}}$. Since $|\mathcal{F}|$ is finite, the proof is completed.

Now we consider $\kappa(\mathcal{A})$ for some special families \mathcal{A} of subsets of \mathbb{N} .

Example 7. Let $\mathcal{A} = \{2\mathbb{N}, 3\mathbb{N}, 5\mathbb{N}\}$. We show that $\kappa(\mathcal{A}) \leq 4$.

 $\begin{array}{l} \text{Let } I\!\!N - (2I\!\!N \cup 3I\!\!N \cup 5I\!\!N) = \{a_k: k=1,2,\cdots\}, 2I\!\!N - (3I\!\!N \cup 5I\!\!N) = \{b_k^1: k=1,2,\cdots\}, 3I\!\!N - (2I\!\!N \cup 5I\!\!N) = \{b_k^2: k=1,2,\cdots\}, 5I\!\!N - (3I\!\!N \cup 2I\!\!N) = \{b_k^3: k=1,2,\cdots\}, 10I\!\!N - 3I\!\!N = \{c_k^1: k=1,2,\cdots\}, 6I\!\!N - 5I\!\!N = \{c_k^2: k=1,2,\cdots\}, 15I\!\!N - 2I\!\!N = \{c_k^3: k=1,2,\cdots\}, 30I\!\!N = \{d_k: k=1,2,\cdots\}. \end{array}$

Define the mappings f, g_1, g_2, g_3 in End(\mathbb{N}) as follows:

$$f(x) = \begin{cases} a_{k+1}, & \text{if } x = a_k \ (k \ge 1), \\ b_{k+1}^i, & \text{if } x = b_k^i \ (i = 1, 2, 3, \text{ and } k \ge 1), \\ c_{k+1}^i, & \text{if } x = c_k^i \ (i = 1, 2, 3, \text{ and } k \ge 1), \\ d_{k+1}, & \text{if } x = d_k \ (k \ge 1). \end{cases}$$

$$g_1(x) = \begin{cases} a_1, & \text{if } x = a_{k+1} \ (k \ge 1), \\ b_1^1, & \text{if } x = a_1, \\ c_1^1, & \text{if } x = b_1^2, \\ b_1^i, & \text{if } x = b_{k+1}^2 \ (i = 1, 2, 3, \text{ and } k \ge 1), \\ c_1^i, & \text{if } x = b_{k+1}^i \ (i = 1, 2, 3, \text{ and } k \ge 1), \\ d_1, & \text{if } x = d_k \ (k \ge 1) \text{ or } c_1^i \ (i = 1, 2, 3). \end{cases}$$

$$g_2(x) = \begin{cases} a_1, & \text{if } x = a_1, \\ c_1^2, & \text{if } x = a_1, \\ c_1^2, & \text{if } x = a_1, \\ c_1^2, & \text{if } x = b_1^i \ (i = 1, 2), \\ c_1^3, & \text{if } x = b_1^3 \\ b_1^i, & \text{if } x = b_{k+1}^i \ (i = 1, 2, 3, \text{ and } k \ge 1), \\ c_1^i, & \text{if } x = b_{k+1}^i \ (i = 1, 2, 3, \text{ and } k \ge 1), \\ c_1^i, & \text{if } x = d_k \ (k \ge 1) \text{ or } x = c_1^i \ (i = 1, 2, 3) \end{cases}$$

$$g_3(x) = \begin{cases} b_1^3, & \text{if } x = a_1, \\ x, & \text{otherwise }. \end{cases}$$

Let $\mathcal{F} = \{f, g_1, g_2, g_3\}$ and $A \in \text{Lat}(\mathcal{F})$.

(i) Each of $2\mathbb{N}, 3\mathbb{N}$ and $5\mathbb{N}$ is invariant under every mapping in \mathcal{F} . Thus $\hat{\mathcal{A}} \subseteq \text{Lat}(\mathcal{F})$.

(ii) If $A \cap (\mathbb{N} - (2\mathbb{N} \cup 3\mathbb{N} \cup 5\mathbb{N})) \neq \emptyset$, then, as $g_1(A) \subseteq A$, it follows that $a_1 \in A$. Then, each $a_{k+1}, k \geq 1$ is in A because $f(A) \subseteq A$. Since $g_i(A) \subseteq A$ it follows that $b_1^i \in A \ (i = 1, 2, 3)$. Again, as $f(A) \subseteq A$, we deduce that A contains each of $2\mathbb{N} - (3\mathbb{N} \cup 5\mathbb{N}), 3\mathbb{N} - (2\mathbb{N} \cup 5\mathbb{N})$ and $5\mathbb{N} - (2\mathbb{N} \cup 3\mathbb{N})$. Now A contains each of $c_1^i \ (i = 1, 2, 3)$. With a similar argument we deduce that A contains each of $6\mathbb{N} - 5\mathbb{N}, 10\mathbb{N} - 3\mathbb{N}, 15\mathbb{N} - 2\mathbb{N}$ and $30\mathbb{N}$. Hence $A = \mathbb{N} \in \text{Lat}(\mathcal{F})$.

In a similar way we can show the following statements are true:

(iii) If $A \cap (2\mathbb{N} - (3\mathbb{N} \cup 5\mathbb{N})) \neq \emptyset$ then A contains $2\mathbb{N}$. If $A \cap (3\mathbb{N} - (2\mathbb{N} \cup 5\mathbb{N})) \neq \emptyset$, then A contains $3\mathbb{N}$. If $A \cap (5\mathbb{N} - (2\mathbb{N} \cup 3\mathbb{N})) \neq \emptyset$, then A contains $5\mathbb{N}$.

(iv) If $A \cap (6\mathbb{I} \mathbb{N} - 5\mathbb{I} \mathbb{N}) \neq \emptyset$, respectively, $A \cap (10\mathbb{I} \mathbb{N} - 3\mathbb{I} \mathbb{N}) \neq \emptyset$, $A \cap (15\mathbb{I} \mathbb{N} - 2\mathbb{I} \mathbb{N}) \neq \emptyset$, then $A \supseteq 6\mathbb{I} \mathbb{N}$, respectively, $A \supseteq 10\mathbb{I} \mathbb{N}$, $A \supseteq 15\mathbb{I} \mathbb{N}$.

(v) If $A \cap 30\mathbb{N} \neq \emptyset$, then $A \supseteq 30\mathbb{N}$.

From (i)-(v), it follows that A either equals \mathbb{N} or is a union of intersections of $2\mathbb{N}, 3\mathbb{N}, 5\mathbb{N}$, that is $A \in \hat{A}$ and so $\hat{A} = \text{Lat}(\mathcal{F})$.

Thus $\operatorname{Lat}(\mathfrak{F}) = \hat{\mathcal{A}}$, so $\kappa(\mathcal{A}) \leq 4$.

Remark 8. From the proof in the above example, we can see that a more general conclusion is true: if p_1, p_2, \dots, p_m are distinct primes, then $\kappa(\{\{p_i \mathbb{N} : i = 1, 2, \dots, m\}\}) \leq m + 1$.

Proposition 9. If $\mathcal{A} = \{A_1, A_2, \cdots, A_m\}$ is a finite chain of distinct subsets of \mathbb{N} with $m \geq 2$, then $\kappa(\mathcal{A}) = 2$.

Proof. Without lose of generality, we assume that $A_1 \subset A_2 \subset \cdots \subset A_m$ and $A_1 \neq \emptyset$ and $A_m = \mathbb{N}$. Let $A_1 = \{a_1^1, a_2^1, \cdots\}, A_2 - A_1 = \{a_1^2, a_2^2, \cdots\}, ..., A_m - A_{m-1} = \{a_1^m, a_2^m, \cdots\}$. Define $f, g \in \text{End}(\mathbb{N})$ as follows: for $i = 1, 2, \cdots, m$, and $k \in \mathbb{N}$,

$$f(a_k^i) = \begin{cases} a_{k+1}^i, & \text{if } a_k^i \text{ is not the last element in } A_i - A_{i-1}, \\ a_k^i, & \text{if } a_k^i \text{ is the last element in } A_i - A_{i-1}. \end{cases}$$

$$g(x) = \begin{cases} a_1^i, & \text{if } x = a_{k+1}^i, \\ a_1^i, & \text{if } x = a_1^{i+1}. \end{cases}$$

Since $\hat{\mathcal{A}}$ is the smallest family containing \mathcal{A} which is closed under arbitrary unions and intersections, $\hat{\mathcal{A}} = \mathcal{A} \cup \{\emptyset\}$. Furthermore, $\mathcal{A} \cup \{\emptyset\} = \text{Lat}(\{f,g\})$. Thus $\kappa(\mathcal{A}) \leq 2$. By Remark 2(2), for any $h \in \text{End}(\mathbb{N})$, $\text{Lat}(\{h\})$ is an infinite family, so $\kappa(\mathcal{A}) \neq 1$, therefore $\kappa(\mathcal{A}) = 2$.

Remark 10.

(1) The reader may wonder whether there is a set family whose reflex index is 1. Consider $\mathcal{A} = \{\emptyset, \mathbb{N}\} \cup \{C_n : n = 1, 2, \cdots\}$, where $C_n = \{n, n + 1, \ldots\}$. Then $\mathcal{A} = \hat{\mathcal{A}} = \text{Lat}(\{f\})$, where f is defined by

$$f(m) = \begin{cases} 1, & \text{if } m = 1, \\ m - 1, & \text{if } m > 1. \end{cases}$$

(2) The following is a chain of subsets of \mathbb{N} whose reflexive index is not finite. Put $\mathcal{B} = \{\emptyset, \mathbb{N}, \{k : k \in \mathbb{N}, k \geq 2\}\} \bigcup \{D_n : n \in \mathbb{N}, n > 1\}$, where for each $n > 1, D_n = \{2, 3, \dots, n\}$. Clearly $\hat{\mathcal{B}} = \mathcal{B}$. Let $\mathcal{F} \subseteq \operatorname{End}(\mathbb{N})$ be any finite family of endomappings on \mathbb{N} satisfying $\mathcal{B} \subseteq \operatorname{Lat}(\mathcal{F})$. If f(1) = 1 for all $f \in \mathcal{F}$, then $\{1\} \in \operatorname{Lat}(\mathcal{F}) - \hat{\mathcal{B}}$. If there is $f \in \mathcal{F}$ with $f(1) \neq 1$, let $l = \max\{f(1) : f \in \mathcal{F}\}$, then $l \geq 2$ and the subset $\{1\} \cup D_l$ is in $\operatorname{Lat}(\mathcal{F}) - \mathcal{B}$. Thus for any finite $\mathcal{F} \subseteq \operatorname{End}(\mathbb{N})$, $\operatorname{Lat}(\mathcal{F}) \neq \mathcal{B} = \hat{\mathcal{B}}$, therefore $\kappa(\mathcal{B})$ is not finite.

Remark 11.

(1) It is possible and necessary to identify the *exact* values of the reflexive indices of more concrete families (such as $\mathcal{A} = \{p_i \mathbb{N} : i = 1, 2, \dots, n\}$ for any distinct prime numbers p_1, p_2, \dots, p_n). We leave this to interested readers to try.

(2) In [7][8], the reflexive families of closed subsets of a topological space are studied. We can also define the reflexive index for a family of closed sets. One of the natural problems would be: for which spaces, does every finite family of closed

sets have a finite reflexive index? Furthermore, one can introduce and consider the reflexive index of a family of closed subspaces of a Hilbert space.

Acknowledgements. I would like to thank Professor Carsten Thomassen for a very helpful conversation with him while he was visiting our department in 2009, which led me to prove the main result in this paper. I also must thank the referees for identifying some errors in the earlier draft and giving me valuable comments and suggestions for improvement.

References

- P. R. Halmos, *Ten problems in Hilbert space*, Bull. Amer. Math. Soc., **76**(1970), 887-933.
- [2] P. R. Halmos, Reflexive lattices of subspaces, J. London Math. Soc., 4(1971), 257-263.
- [3] K. J. Harrison and W.E. Longstaff, Automorphic images of commutative subspace lattices, Proc. Amer. Math. Soc., 296(1986), 217-228.
- [4] W. E. Longstaff, Strongly reflexive subspace lattices, J. London Math. Soc., 11(1975), 2:491-498.
- [5] W. E. Longstaff, On lattices whose every realization on Hilbert space is reflexive, J. London Math. Soc., 37(1988), 2:499-508.
- [6] W. E. Longstaff and O. Panaia, On the ranks of single elements of reflexive operator algebras, Proc. Amer. Math. Soc., 125(1997), 10:2875-2882.
- [7] Z. Yang and D. Zhao, *Reflexive families of closed sets*, Fund. Math., 192(2006), 111-120.
- [8] Z. Yang and D. Zhao, On reflexive closed set lattices, Comment. Math. Univ. Carolinae, 51(2010), 1:23-32.
- D. Zhao, On reflexive subobject lattices and reflexive endomorphism algebras, Comment. Math. Univ. Carolinae, 44(2003), 23-32.