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Abstract. Let M be a manifold with a volume form ω and f : M → M be a diffeo-

morphism of class C1 that preserves ω. We prove that if M is almost bounded for the

diffeomorphism f , then M is chain recurrent. Moreover, we get that Lagrange stable

volume-preserving manifolds are also chain recurrent.

1. Introduction

Our purpose of this paper is to study the chain recurrence set of volume-
preserving diffeomorphisms on non-compact manifolds. We follow Conley’s defi-
nitions of attractors and chain recurrences [4], and Hurley’s generalized definitions
[5],[6].

From Poincaré recurrence theorem, it is well-known that for any volume-
preserving diffeomorphism on the compact manifolds M , every point of M is chain
recurrent. However, unfortunately, the parallel statement for the chain recurrence
does not hold for the non-compact manifolds. Thus, in the non-compact case, we
may impose the canonical conditions as almost boundedness and Lagrange stability.
Our main theorem is as follows.
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Theorem 2.9. Let M be a manifold with a volume form ω and f be a volume-
preserving diffeomorphism on M . If M is almost bounded for f , then M is strongly
chain recurrent for f , i.e., every point of M is strongly chain recurrent with respect
to f .

The above theorem follows from a stronger claim, Proposition 2.10. The proposition
asserts that with the assumptions in Theorem 2.9 except the Lagrange-stability
assumption, almost every point in U − A should have the unbounded orbit, where
A is an attractor and U is an attractor block (weakly absorbing set) of A. I.e., the
set of points of U −A with bounded orbits is of measure 0.

The study of attractors in the volume-preserving category is meaningful only
in the non-compact cases. This is because, for a compact conservative dynamics
(i.e., volume-preserving or symplectic dynamics on compact manifolds), there are
only trivial attractors, which is clear from the definition of conservative diffeomor-
phisms (volume-preserving diffeomorphisms or symplectomorphisms on compact
manifolds)[3].

Hence, we attempt to understand the volume-preserving and the symplectic dy-
namics on non-compact spaces through the attractors and then the chain recurrence.
Whilst, similar dynamical properties on compact spaces have been intensively stud-
ied with appropriate assumptions, e.g. C1-genericity (ref.[1]). Note that since the
symplectic diffeomorphisms are automatically volume-preserving, our results in the
paper is immediately applicable to the symplectic dynamics as well.

2. Chain Recurrences of Volume-preserving Diffeomorphisms

2.1. Preliminaries

We fix the notations and definitions used throughout the paper.

Let M be an n-dimensional differentiable manifold with a metric d, and f : M →
M be a C1-diffeomorphism. A volume form ω on M is a nowhere vanishing n-form
on M . A symplectic form ω on M is a nowhere degenerate 2-form on M . Here, the
non-degeneracy of ω is the same as its (n/2)-times wedge product ω

n
2 = ω ∧ · · · ∧ω

defines a volume form on M . Thus, when we say a symplectic form, n is assumed to
be even. Integration along the subsets of M defines a Lebesgue measure m. Indeed,
by the para-compactness of M , locally m is written as a product of a C1-function
and the standard Lebesgue measure on Rn (via the C1-transition). This clarifies
a Lebesgue measurable subset of M , a countable union of Lebesgue measurable
subsets of Rn (via the C1-transition). Thanks to the well-known theory of Lebesgue
measures and Borel measures, one guarantees any compact subset of M is Lebesgue
measurable and is of finite measure. By the compactness, the closed balls (with
finite radii) are of finite measure, as well.

If one says f preserves ω, this means f∗ω = ω. When ω is a symplectic form,
the ω-preservation implies the volume-preservation. The volume-preservation of f
amounts to the measure-preservation. In the case, for a Lebesgue measurable subset
N ⊂ M , we have m(N) = m(f(N)).
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We fix a manifold with metric (X, d) and a homeomorphism f : X → X. We
define

P = the set of R+-valued continuous functions on X.

Definition 2.1. A nonempty open subset U of X is an attractor block for f if the
closure of f(U) is contained in U . When U is an attractor block, the set

A =
⋂

n≥0

fn(U)

is called the weak attractor determined by U .

Definition 2.2. If ε ∈ P, then x0, x1, · · · , xn is an ε-chain if d(f(xj), xj+1) <
ε(f(xj)) for 0 ≤ j < n− 1. The number n is called the length of the ε(x)-chain. A
point p is strongly chain recurrent for f if for every ε ∈ P, there exists an ε(x)-chain
of length at least 1 that begins and ends at p. We denote by

CR+(f) = the set of all strong chain recurrence points of f .

Note that if M is a compact manifold, then the strong chain recurrence point
coincides with the usual chain recurrence point.

Definition 2.3. Let U be an attractor block for f and A be the associated weak
attractor. We define the basin of a weak attractor A relative to U , B(A;U) as the
open set ∪n≥0f

−n(U).
Every point of B(A; U) has the omega-limit sets contained in A. When X is a

compact space, B(A; U) is independent of U while it is not true for non-compact
manifolds. Therefore, we define the extended basin B(A) of A by the union of the
sets B(A;U) as U runs over all the absorbing sets that determine A.

2.2. Strong chain recurrences of volume-preserving diffeomorphisms

The chain recurrence theorem on compact manifolds with volume-preserving
diffeomorphism is almost direct to prove. Our focus is non-compact manifolds. The
simple examples below exhibit the failure of the chain recurrence theorem in the
volume-preserving dynamics over non-compact manifolds.

Example 2.4. Let M = R and f : M → M given by f(x) = x + 1. Then, f
preserves a differential form and no point of M is a (strong) chain recurrence for f .
While, let U = (0,∞), then we have that U is an attractor block, with associated
empty weak attractor.

Example 2.5. Let M = R2 and f : M → M given by f(x, y) = (x + 1, y). Let
ω be a volume form (equivalently, a symplectic form) by ω = dx ∧ dy. Then, it is
clear that f preserves ω. Let

Un = {(x, y) ∈ M | y <
−1

x− n
, x < n} ∪ {(x, y) ∈ M | x ≥ n}.
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Since f(Un) = Un+1, we can easily check that U0 is an attractor block for the
translation f and

A = {(x, y) | y ≤ 0}
is the weak attractor determined by U . Whilst, no point of M is a (strong) chain
recurrence for f .

The following theorem by Hurley is a generalized version of Conley’s theorem.

Theorem 2.6.[5, 6] If X is a locally compact metric space and f : X → X is
continuous, then the strong chain recurrence set CR+(f) of f is the complement of
the union of the set B(A) − A, as A runs over the collection of weak attractors of
f . I.e.,

(2.1) X − CR+(f) =
⋃

A:weak attractor

(B(A)−A).

Here, the strong chain recurrence and weak attractors are defined with respect
to a continuous map f with a suitable adaptation of the definitions in the previous
subsection.

The following proposition (and its corollary) shows the invariance of the weak
attractors and the boundaries.

Proposition 2.7. Let f be a homeomorphism on a metric space X, U be an
attractor block, and A be an associated weak attractor. If a point x is in U − A,
then the intersection of the (positive) f -orbit of x and A is empty.

Proof. Let O+
f (x) be the (positive) f -orbit of x, i.e., O+

f (p) = {fn(p) | n ≥ 0}.
Suppose O+

f (x)∩A 6= ∅, Then there exists a nonnegative integer k such that fk(x) ∈
A, that is, fk(x) ∈ ∩n≥0fn(U). Note that, f(U) = f(U). Thus x ∈ fn−k(U) for
all n ≥ 1 and so x ∈ A by the shrinking property. This is a contradiction, which
completes the proof. 2

When f : X → X is continuous, by the definition, it is easily shown that an
attractor is positively f -invariant. If f is a homeomorphism, an attractor A is
f -invariant, i.e., f(A) = A. Indeed, if f(A) 6= A then there is an element x in
A−f(A). From the definitions, f−1(x) ∈ U−A, where U is an associated attractor
block. Then, Proposition 2.7, we must meet a contradiction. Hence an attractor is
invariant.

Corollry 2.8. Let f be a homeomorphism on a locally compact metric space
M . Then the boundary of every weak attractor is positively f -invariant, that is,
f(∂A) ⊆ ∂A for every weak attractor A.

Proof. Suppose the contrary of the conclusion. Then by the above statement, we
may assume that there exists a boundary point x satisfying f(x) is in the interior
of A. From the local compactness, we can choose compact neighborhood C of f(x)
such that f−1(C) is also a compact neighborhood of x. Then, we are able to pick
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a point in U −A where U is an associated attractor block which determines A. By
Proposition 2.7, it is a contradiction. 2

Now we embark on the main proposition and the main theorem for the (strong)
chain recurrences on the non-compact manifolds. The proposition tells us that the
points near an attractor with bounded orbits form a measure 0 set, in the volume-
preserving dynamics. Recall that in Example , every orbit is unbounded thus the
proposition trivially holds.

For p ∈ M , we denote K+(p) := O+
f (p). We call M almost bounded for f , if for

almost everywhere p ∈ M , K+(p) is compact. Since we are working on a metric
space, the compactness of K+(p) amounts to the boundedness of O+

f (p).

Theorem 2.9. Let M be a manifold with a volume form ω, and f be a volume-
preserving diffeomorphism on M . If M is almost bounded for f , then M is strongly
chain recurrent for f , i.e., every point of M is strongly chain recurrent with respect
to f .

Proof. We use Hurley’s theorem (Theorem 2.6) for locally compact spaces. To
prove our theorem, the nonexistence of weak attractors should be guaranteed. On
the contrary, suppose that a nonempty proper weak attractor A exists. Let U be an
associated attractor block of A (so that A ( U). We will prove that the complement
in U −A of the set of points of U −A with unbounded orbits is of measure 0 in the
following proposition. 2

Proposition 2.10. Let M be a manifold (not necessarily compact) with a volume
form ω. Let f be a volume-preserving diffeomorphism on M . Let A be any weak
attractor and U be an associated attractor block with A ( U . Then, the comple-
ment in U−A of the set of points p ∈ U−A with unbounded orbits is of measure 0.
That is, m{p ∈ (U − A) | O+

f (p) is unbounded}c = 0, here m is a measure induced
by the volume form.

Proof. Let p ∈ U −A and K ⊂ U −A be a compact neighborhood of p with a finite
measure c > 0. Let us fix any point x0 ∈ M . Let Br(x0) be the closed ball of the
radius r centered at x0 ∈ M (where r ∈ Z+). Let us define

(2) Kr = {q ∈ K|fk(q) /∈ Br(x0) for some positive integer k}.

Note that
K1 ⊃ K2 ⊃ K3 ⊃ ....

and that

(3) L =
⋂

r∈Z+

Kr

is the set of points of K with unbounded orbits and m(L) = m(K) implies the claim
of the proposition.
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Now, to prove the proposition, it suffices to show that L is of measure c. Let
us observe

K −Kr = {q ∈ K|fk(q) ∈ Br(x0) for all k ∈ Z+}
=

⋂

k∈Z+

{q ∈ K|fk(q) ∈ Br(x0)}

and thus K −Kr is measurable as {q ∈ K | fk(q) ∈ Br(x0)} is measurable for each
k ∈ Z+. Therefore, L is measurable as well.

We claim that

(4) m((fk(U)− fk(A)) ∩Br(x0)) → 0

as k →∞. Indeed, Lebesgue’s dominated convergence theorem assures it from the
following:

(a) the definition of attractors (i.e., the descending sequence U ⊃ f(U) ⊃
f2(U) ⊃ ... ⊃ A = ∩kfk(U) ),

(b) the f -invariance of A,

(c) fk(U) − fk(A) and Br(x0) are measurable and their intersection is of finite
measure.

Note that {q ∈ K|fk(q) ∈ Br(x0)} = f−k(Br(x0)) ∩K. Thus, we have

m({q ∈ K|fk(q) ∈ Br(x0)}) = m(f−k(Br(x0)) ∩K)
= m((Br(x0)) ∩ fk(K))

where the latter equality is due to the measure-preservation of f . Because of the
inclusion fk(K) ⊂ fk(U)− fk(A) and (4), we obtain

m({q ∈ K|fk(q) ∈ Br(x0)}) → 0

as k →∞ by Lebesgue’s dominated convergence theorem. Therefore, for each r, we
have m(K −Kr) = 0, equivalently, m(Kr) = m(K)−m(K −Kr) = c. By applying
Lebesgue’s dominated convergence theorem to (3), we obtain m(L) = c, as desired.
2

Let us continue the proof of Theorem 2.9. By Proposition 2.10, almost every
point of U −A has an unbounded orbit. This contradicts to our assumption of the
almost boundedness of M with respect to f . This finishes the proof of Theorem
2.9. 2

Recall that a riemannian manifold M is said to be Lagrange-stable for a diffeo-
morphism f if every closure of an orbit is compact, i.e., for each p ∈ M , K+(p) is a
compact subset of M . Since the Lagrange-stability is a stronger condition than the
almost-boundedness, we obtain the corollary.
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Corollry 2.11. Let M be a manifold with a volume form ω, and f be a Lagrange-
stable volume-preserving diffeomorphism on M . Then, M is strongly chain recur-
rent for f , that is, each point of M is strongly chain recurrent with respect to f .
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