DOI QR코드

DOI QR Code

Computational Fluid Analysis for Optimization of Vortex Cup with Different Shape

형상 변화에 따른 볼텍스 컵 최적화를 위한 전산유동해석

  • 김중희 (경북대학교 기계공학부) ;
  • 손창현 (경북대학교 기계공학부)
  • Received : 2014.02.03
  • Accepted : 2014.06.11
  • Published : 2014.08.01

Abstract

The vortex cup is proposed as a method to transport sensitive products such as silicon wafers in manufacturing. Air through the inlet nozzle located at the top of the vortex cup flows to form a swirl in the cylinder. The flow located in the lower part of the thin gap between the vortex cup and the bottom surface escapes and generates a negative pressure that can lift objects. In this research, three-dimensional numerical simulation of the air flow field in a vortex cup is performed, and a comparison of the simulation and experimental results shows very good agreement. In addition, the vortex cup length and shape that affect the negative pressure were applied to the analysis. Through the simulation results, optimum conditions for the vortex cup shape were proposed.

볼텍스 컵은 실린콘 웨이프 제조공정과 같이 민갑한 물체을 이송시키는 방법으로 제안되었다. 볼테스 컵의 상부에 위치한 노즐을 통해 공기를 공급하면 내부 실린더에서 큰 선회유동이 생성된다. 공기는 볼텍스 컵과 바닥면 사이의 틈새로 빠져나가면서 흡입압력을 생성시키고 물체를 들어 올릴 수 있게 된다. 본 논문에서는 볼텍스 컵에 관한 3차원 유동 해석을 통해 실험 결과와 해석 결과를 비교하여 해석의 신뢰성을 확인하였다. 그리고 볼텍스 컵의 길이 변화와 형상 변화를 주어 해석을 통해 흡입 압력 생성에 영향을 미치는 정도를 분석하였고, 볼텍스 컵 형상의 최적 조건을 제시하였다.

Keywords

References

  1. Vandaele, V., Lambert, P. and Delchambre, A., 2005, "Non-contact Handling in Microassembly: Acoustical Levitation," Precision Engineering, Vol. 29, pp. 491-505. https://doi.org/10.1016/j.precisioneng.2005.03.003
  2. Davis, S., Gray, J. O. and Caldwell, Darwin G., 2008, "An End Effector Based on the Bernoulli Principle for Handling Sliced Fruit and Vegetables," Robotics and Computer-Integrated Manufacturing, Vol. 24. pp 249-257. https://doi.org/10.1016/j.rcim.2006.11.002
  3. Ma, W., Xu, L. and Yu, H., 2010, "Study in Flow Field Characteristics of Non-Contact Vortex Negative Pressure Carrier," International Conference on Measuring Technology and Mechantronics Automation, pp. 587-591.
  4. Kim, J. H., 2013, "Computational Flow Analysis for the Optimization of the Vortex Cup," Master thesis, Kyungpook National Univ.
  5. Li, X., Kawashima, K. and Kagawa, T., 2008, "Analysis of Vortex Levitation," Experimental Thermal and Fluid Science, Vol. 32, pp. 1448-1454. https://doi.org/10.1016/j.expthermflusci.2008.03.010
  6. Wu, Q., Ye, Q. and Meng, G. X., 2011, "Application and Conparison of Different Turbulence Models in the Three-Dimensional Numerical Simulation of Non-Contact Swirl Sucker," Journal of Engineering for Thermal Energy and Power, Vol. 18, pp. 337-342.
  7. Kim, J. H. and Sohn, C. H., 2012, "Analysis of Negative Pressure According to Flow Rate and Shape of Vortex Cup," 7th National Conference on Fluids Engineering, pp. 92-93.