DOI QR코드

DOI QR Code

Responses of nutrient uptake, carbohydrates and antioxidants against low temperature in plants

저온에 대한 식물의 양분흡수, 탄수화물 및 항산화 반응 특성

  • Lee, Suyeon (National Academy of Agricultural Science and Technology, RDA) ;
  • Jung, Jungah (National Academy of Agricultural Science and Technology, RDA) ;
  • Sung, Jwakyung (National Academy of Agricultural Science and Technology, RDA) ;
  • Ha, Sangkeun (National Academy of Agricultural Science and Technology, RDA) ;
  • Lee, Deogbae (National Academy of Agricultural Science and Technology, RDA) ;
  • Kim, Taewan (Department of Plant Life and Environmental Science, Hankyong National University) ;
  • Song, Beomheon (Department of Crop Science, Chungbuk National University)
  • Received : 2014.06.23
  • Accepted : 2014.06.27
  • Published : 2014.06.30

Abstract

Recently, a quick drop of air temperature in plastic film houses by adverse weather conditions leads to the occurrence of low temperature damages to growing crops. Chilling injury, defined as a variety of growth restriction occurring below the optimal temperature, is one of environmental factors strongly affecting crop growth and yield. Low temperature causes the restricted evapotranspiration, reduced mineral uptake (P > K > $NO_3{^-}$), and an increase in electrolyte leakage such as K. Despite being different with plant species, an accumulation of soluble carbohydrates such as glucose, fructose, sucrose and starch under chilling condition is well known. A variety of environmental stresses are known to cause oxidative damage to plants either directly or indirectly by triggering an increased level of production of reactive oxygen species (ROS), and, to combat the oxidative damage, plants have the antioxidant defense systems comprising of enzymes, SOD, POD, CAT, GPX and APX, and non-enzymes, ascorbate, gluthathione, ${\alpha}$-tocopherol, phenolic compounds, carotenoid and flavonoids. The aim of this review is to provide basic information to build chilling-indicators and optimal nutrition management under adverse temperature conditions as broadly considering mineral uptake, carbohydrate metabolism and antioxidative defense system.

Keywords

References

  1. Ackerson RC. 1981. Osmoregulation in cotton in response to water stress II. Leaf carbohydrate status in relation to osmotic adjustment. Plant Physiol. 67:479-483.
  2. Ait Barka E. Audran JC. 1996. Reponse des vignes champeroixes aux temperatures negatives: effet d'un refroidissement controle sur les reserves glucidiques du complexe gemmaire avant et au cours du de bourrement. Can. J. Bot. 74: 492-505. https://doi.org/10.1139/b96-060
  3. Alscher RG. Erturk N. Heath LS. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53(372):1331-1341. https://doi.org/10.1093/jexbot/53.372.1331
  4. Anderson MD, Prasad TK. Stewart CR. 1995. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109:1247-1257. https://doi.org/10.1104/pp.109.4.1247
  5. Anderson MD. Prasad TK. Martin DA. Stewart CR. 1994. Differential gene expression in chilling acclimated maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance. Plant Physiol. 105:331-339. https://doi.org/10.1104/pp.105.1.331
  6. Asada K. 1984. Chloroplast : formation of active oxygen and its scavenging. Methods in Enzymol. 105:422-429. https://doi.org/10.1016/S0076-6879(84)05059-X
  7. Asada K. 1992. Ascorbate peroxidase : A hydrogne peroxidescavenging enzyme in plants. Plant Physiol. 85:235-241. https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
  8. Bailly C, Benamar A. Corbineau F. Dome D. 1996. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seed as related to deterioration during accelerated aging. Physio. Plant 97:104-110. https://doi.org/10.1111/j.1399-3054.1996.tb00485.x
  9. Bannister JV. Bannister WH. Rotilio G. 1987. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit. Rev. Biochem. 22:111-180. https://doi.org/10.3109/10409238709083738
  10. Bassiri-Rad H. 2000. Kinetics of nutrient uptake by roots: responses to global change. New Phytol. 147:155-169. https://doi.org/10.1046/j.1469-8137.2000.00682.x
  11. Bohnert HJ. Sheveleva E. 1998. Plant stress adaptationsmaking metabolism move. Curr. Opin. Plant Biol. 1:267-274. https://doi.org/10.1016/S1369-5266(98)80115-5
  12. Bowler C, Van Montagu M. Inze D. 1992. Superoxide dismutases and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:83-116. https://doi.org/10.1146/annurev.pp.43.060192.000503
  13. Bowler C, an Camp W, van Montagu M. Inze D. 1994. Superoxide dismutase in plant. CRC Crit. Rev. Plant Sci. 12:199-218.
  14. Catala R. Santos E. Alonso JM. Ecker JR. Martinez- Zapater JM. Salinas J. 2003. Mutations in the $Ca_{2}^{+}/H^{+}$ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell. 15: 2940-2951. https://doi.org/10.1105/tpc.015248
  15. Chen GX. Asada K. 1989. Ascorbate peroxidase in tea leaves: Occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30:987-998.
  16. Choi HO. Lee JH. 1976. Studies on low temperature injury at each growth stage in rice plant. J. Korean Soc. Crop Sci. 21:203-210.
  17. Clarkson DT. 1986. Root structure and sites on ion uptake. In Waisel (ed.). Plant roots: the hidden half. Dekker, New York. 417-453.
  18. Copper D. Clarkson DT. 1989. Cycling of amino-nitrogen and other nutritients between shoot nd roots in cereals. J. Exp. Bot. 40:753-762. https://doi.org/10.1093/jxb/40.7.753
  19. Couee I. Sulmon C. Gouesbet G. Amrani AE. 2006. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp. Bot. 57:449-459. https://doi.org/10.1093/jxb/erj027
  20. Davies K. 1995. Oxidative stress : The paradox of aerobic life, pp1-32. in : C.Rice-Evans, B. Halliwell, and G.G. Lunt (eds.). Free radicals and oxidative stress : Environment, drugs and food additives. Biochem. Soc. Symp. 61, Portlant Press, London, UK.
  21. Du L. Poovaiah W. 2005. $Ca_{2}^{+}$/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature. 437:741-745. https://doi.org/10.1038/nature03973
  22. Duke MV. Salin ML. 1985. Purification and characterization of aniron-containing superoxide dismutase froma eukaryote, Ginko biloba. Arch Biochem Biophys. 243:305-314. https://doi.org/10.1016/0003-9861(85)90800-8
  23. FAO. 2001. Climat variability and change; Achallenge for sustainable agricultural production. Committee on Agriculture, Sixteenth Session Report, 26-30 March, Rome, Italy.
  24. FAO. 2004. Impact of climate change on agriculture in Asia and the Pacific. Twenty-seventh FAO Regional Conference for Asia and the Pacific. Beijing, china, 17-21 May.
  25. Fernandez O. Theocharis A. Bordiec S. Feil R. Jacquens L. Clement C. Fontaine F. Ait Barka E. 2012. Burkholderia phytofirmans strain PsJN acclimates grapevine to cold by modulating carbohydrates metabolism. Mol Plant Microbe Interact 25:496-504. https://doi.org/10.1094/MPMI-09-11-0245
  26. Foyer CH. Lopez-Delgado H. Dat J.F. Scott I.M. 1997. Hydrogen peroxide and glutathione associated mechanism of acclimatory stress tolerance and signalling. Physiol Plant. 100:241-254. https://doi.org/10.1111/j.1399-3054.1997.tb04780.x
  27. Furbank RT Foyer CH. Walker DA. 1987. Regulation of photosynthesis in isolated spinach chloroplasts during orthophosphate limitation. Biochim. biophys. Acta. 894:552-561. https://doi.org/10.1016/0005-2728(87)90135-6
  28. Graham D. Patterson BD. 1982. Responses of plants to low non-freezing temperatures: Proteins metabolism, and acclimation. Annu. Rev. Plant Physiol. 33:347-372. https://doi.org/10.1146/annurev.pp.33.060182.002023
  29. Green DG. Ratzlaff CD. 1975. An apparent relationship of soluble sugars with hardiness in Winter wheat varieties. Can. J. Bot. 53:2198-2201. https://doi.org/10.1139/b75-243
  30. Greiner S, Rausch T. Sonnewald U. Herbers K. 1999. Ectopic expression of a tobacco invertase inhibitor homolog prevents cold induced sweetening of potato tubers. Nature biotechnol. 17:708-711. https://doi.org/10.1038/10924
  31. Hekneby M. Antolin MC. Sanchez-Diaz M. 2006. Frost resistance and biochemical changes during cold acclimation in different annual legumes. Environ Exp. Bot. 55:305-314. https://doi.org/10.1016/j.envexpbot.2004.11.010
  32. Hetherington SE. He J. smillie RM. 1989. Photoinibition at low temperature in chilling-sensitive and resistant plant. Plant Physiol. 90:1609-1615. https://doi.org/10.1104/pp.90.4.1609
  33. Hori Y. Arai K. Toki T. 1970. Studies on the effects of root temperature and its combination with air temperature on the growth and nutrition of vegetable crops. II. Carrot, celery, pepper, grafted cucumber, and cucurbit usd as stocks for cucumber. Bull. Hort. Res. Sta. Japan. Ser. A. 9: 189-219.
  34. Hubbard NL. Huber SC. Pharr DM. 1989. Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol. 91:1527-1534. https://doi.org/10.1104/pp.91.4.1527
  35. Jang CP. Gyung HH. Kim S.W. Park IH. Liu JR. Kwak SS. 1996. Comparison of catalase and other antioxidant enzyme activities in various plant cell lines. Kor J. Plant Tissue Culture 23(3):157-160.
  36. Jimenez A. Hernandez JA. Pastori G. del Rio LA. Sevilla F. 1998. Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol. 118:1327-1335. https://doi.org/10.1104/pp.118.4.1327
  37. Kang KS. Lim CJ. Han TJ. Kim JC. Jin CD. 1998. Activation of ascorbate-glutathione cycle in Arabidopsis leaves in responses to aminotriazol. J. Plant Biol. 41:155-161.
  38. Kang NJ. Cho MW. Rhee HC. Choi YH. Um YC. 2007. Differential Responses of antioxidant enzymes on chilling and drought stress in tomato seedlings (Lycopersicon esculentum L.). J. Bio-Environment Control 16(2):121-129.
  39. King AI. Joyce DC. Reid MS. 1988. Role of carbohydrates in diurnal chilling sensitivity of tomato seedlings. Plant Physiol. 86:764-768. https://doi.org/10.1104/pp.86.3.764
  40. Kishitani S. Watanabe K. Yasuda S. Arakawa K. Takabe T. 1994. Accumulation of glycinebetanine during cold accumulation and freezing tolerance in leaves of winter and spring barley plants. Plant Cell Environ. 17:89-95. https://doi.org/10.1111/j.1365-3040.1994.tb00269.x
  41. Knight H. Brandt S. Knight MR. 1998. A history of stress alters drought calcium signalling pathways in Arabidopsis. Plant J. 16:681-687. https://doi.org/10.1046/j.1365-313x.1998.00332.x
  42. Kramer PJ. 1983. Water relations of plants. Academic Press, New York.
  43. Krasensky J. Jonak C.. 2012. Drought, salt, and temperature stress induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63(4):1593-1608. https://doi.org/10.1093/jxb/err460
  44. Labate CA. Leegood RC. 1988. Limitation of photosynthesis by changes in temperature. Factors affecting the response of carbon dioxide assimilation to temperature in barley leaves. Planta. 173:519-527. https://doi.org/10.1007/BF00958965
  45. Lee DH. Lee CB. 2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: In gel enzyme activity assays. Plant Sci. 159:75-85. https://doi.org/10.1016/S0168-9452(00)00326-5
  46. Lee EH. Kim BY. Lee KD. Lee JW. Kwon YS. 1998. Nitrate content and activities of nitrate redctase and glutamine synthetase as affected by temperatue and pH of nutrient solution in leaf lettuce and water dropwort. Kor J. Soc. Hort. Sci. 39:157-160.
  47. Leegood RC. Furbank RT. 1986. Stimulation of photosynthesis by 2% oxygen at low temperatures is restored by phosphate. Planta. 168:84-93. https://doi.org/10.1007/BF00407013
  48. Lester GE. Dunlap JR. 1985. Physiological changes during development and ripening of 'Perlita' muskmelon fruits. Scientia Hort. 26:323-331. https://doi.org/10.1016/0304-4238(85)90016-0
  49. Lineberger RD. Steponkus PL. 1980. Cryoprotection by glucose and raffinose to chloroplast thylakoids. Plant Physiol. 65:298-304. https://doi.org/10.1104/pp.65.2.298
  50. Lojkowska E. Holubowska M. 1989. changes of the lipid catabolism in potato tubers from cultivars differing in susceptibility to autolysis during the storage. Potato Res. 32:463-470. https://doi.org/10.1007/BF02358502
  51. Longa AA. Del Rio LA. Palma JM. 1994. superoxide dismutase of chestnut leaves, Castanea sativa: Characterization and study of their involvement in natural leaf senescence. Plant Physiol. 92:227-232. https://doi.org/10.1111/j.1399-3054.1994.tb05330.x
  52. Lowell CA. Tomlinson PT. Koch KE. 1989. Sucrose metabolizing enzymes on transport tissues and adjacent sink structures in developing citrus fruit. Plnat Physiol. 90: 1394-1402. https://doi.org/10.1104/pp.90.4.1394
  53. Lyons JM. 1973. Chilling injury in plants. Annu Rev Plant Physiol. Plant Mol. Biol. 24:445-466. https://doi.org/10.1146/annurev.pp.24.060173.002305
  54. Macheix JJ. Sapis JC. Fleuriet A. 1991. Phenolic compounds and polyphnenoloxidase in relation to browning in grapes and wines. Crit. Rev. Food Sci. Nutr. 30:441-486. https://doi.org/10.1080/10408399109527552
  55. Mackay AD. Barber SA. 1984. Soil temperature effects on root growth and phosphorous uptake by com. Soil Sci. Soc. Amer. J. 48:818-823. https://doi.org/10.2136/sssaj1984.03615995004800040024x
  56. Marschner H. 1995. Mineral nutrition of higher plants. London: Academic Press.
  57. Matsumura T. Tabayashi N. Kamagata Y. Souma C. Saruyama H. 2002. Wheat catalase expressed in transgenic rice can improve tolerance against low temperatures stress. Physiol. Plant 116:317-327. https://doi.org/10.1034/j.1399-3054.2002.1160306.x
  58. Matteucci MD. Angeli S. Errico S. LamannaR R. Perrotta G. Altamura MM. 2011. Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L. genotypes with different cold hardiness. J. Exp. Bot. 62:3403-3420. https://doi.org/10.1093/jxb/err013
  59. McKersie, BD. Leshem YY. 1994. Stress and stress coping in cultivated plants. Kluwer Academic Publishers. Netherlands. 79-103.
  60. McKersie BD. Chen YR. De Beus M. Bowler SR. Inze D. Halluin K. Botterman J. 1993. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicagol sativa L). Plant Physiol. 103:1155-1163. https://doi.org/10.1104/pp.103.4.1155
  61. Menzel A. 2000. Trends in phenological phases in Europe between 1951 and 1996, International Joumal of Biometeorology. 44:76-81. https://doi.org/10.1007/s004840000054
  62. Mittler R. Vanderauwera S. Gollery M. Breusegem FV. 2004. Reactive oxygen gene network of plants. Tre. Plant Sci. 9:490-498. https://doi.org/10.1016/j.tplants.2004.08.009
  63. Nam, JH. Kang WH. Kim IS. 2001. Effect of $CaCl_{2}$ and sucrose treatments on freezing tolerance of chinese cabbage. J. Kor. Soc. Hort. Sci. 42(6):695-698.
  64. Nicolas JJ. Richard F. Goupy P. Amiot MJ. Auber SY. 1994. Enzymatic browning reactions in apple and apple products. Crit. Rev. Food SCi. Nutr. 34:109-157. https://doi.org/10.1080/10408399409527653
  65. Noctor G. Foyer CH. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:249-279. https://doi.org/10.1146/annurev.arplant.49.1.249
  66. Pammenter NW. Loreto F. Sharkey TD. 1993. End product feedback effects on photosynthetic electron transport. Photosynth. Res. 35:5-14. https://doi.org/10.1007/BF02185407
  67. Patterson BD. Murate T. Graham D. 1976. Electrolyte leakage induced by chilling in Passiflora species tolerant to different climates. Austral. J. Plant Physiol. 3:435-438. https://doi.org/10.1071/PP9760435
  68. Patton AJ. Cunningham SM. Volenec JJ. Reicher ZJ. 2007. Differences in freeze tolerance of zoysiagrasses: II. Carbohydrates and proline accumulation. Crop Science Society of America, Madison.
  69. Perras M. Sarhan F. 1984. Energy state of spring and winter wheat during cold hardening. Soluble sugars and adenine nucleotides. Plant Physiol. 60:129-132. https://doi.org/10.1111/j.1399-3054.1984.tb04552.x
  70. Poirier Y. Bucher M. 2002. Phosphate transport and homeostasis in Arabidopsis. In: Somerville CR, Meyerowitz EM, eds. The Arabidopsis book. Rockville, MD: The American Society of Plant Biologists, 1-35.
  71. Powles SB. 1984. Photoinhibition of photosynthesis induced by visible light. Annu. Rev. Plant Physiol. 35:15-44. https://doi.org/10.1146/annurev.pp.35.060184.000311
  72. Prasad TK. 1997. Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings. Plant Physiol. 114:1369-1376. https://doi.org/10.1104/pp.114.4.1369
  73. Prasad TK. Anderson MD. Stewart CR. 1994. Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiol. 105:619-627. https://doi.org/10.1104/pp.105.2.619
  74. Raghothama KG. 1999. Phosphate acquisition. Annual Review of Plant Physiol. Plant Mol. Biol. 50:665-693. https://doi.org/10.1146/annurev.arplant.50.1.665
  75. Raison JK. Lyons JM. 1986. Chilling injury a plea for uniform terminology. Plant Cell Environ 9:685-686. https://doi.org/10.1111/j.1365-3040.1986.tb02098.x
  76. Ranwala AP. Iwanami SS. Masuda H. 1991. Acid and neutral invertase in the mesocarp of developing muskmelon (Cucumis melo L. cv. Prince) fruit. Plant Physiol. 96:881-886. https://doi.org/10.1104/pp.96.3.881
  77. Rivero RM. Ruiz JM. Sanchez E. Romero L. 2003. Does provide tomato plants and advantage against $H_{2}O_{2}$ production under conditions of thermal shock. Plant Physiol. 117:44-50. https://doi.org/10.1034/j.1399-3054.2003.1170105.x
  78. Ruelland E. Zachowski A. 2010. How plants sense temperature. Environ Exp. Bot. 69:225-232. https://doi.org/10.1016/j.envexpbot.2010.05.011
  79. Ruth GN., and U. Kafkafi. 1980. Root temperature and percentage $NO_{3}$/$NH_{4}^{+}$ effect on tomato development. Nutrients composition of tomato plants. Agron. J. 72:762-766. https://doi.org/10.2134/agronj1980.00021962007200050017x
  80. Sairam KR., K. Veerabhadra Rao, and GC. Srivastava. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163: 1037-1045. https://doi.org/10.1016/S0168-9452(02)00278-9
  81. Salin ML. 1991. Chloroplast and mitochondrial mechanism for protection against oxygen toxicity. Free Radic. Res. Commun. 12:851-858.
  82. Sanders D. Pelloux J. Brownlee C. Harper JF. 2002. Calcium at the crossroads of signaling. Plant Cell 14 (Suppl): S401-S417. https://doi.org/10.1105/tpc.002899
  83. Sangwan V. Foulds I. Singh J. Dhindsa RS. 2001. Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires $Ca_{2}^{+}$ influx. Plant J. 27:1-12. https://doi.org/10.1046/j.1365-313x.2001.01052.x
  84. Schaffer AA. Aloni B. Fogelman E. 1987b. Sucrose metabolism and accumulation in developing fruit of Cucumis. Phytochemistry. 26:883-1887.
  85. Schaffer AA. Sagee O. Goldschmidt EE. Goren R. 1987a. Invertase and sucrose synthase activity, carbohydrate status and endogenous IAA levels during citrus leaf development. Plant Physiol. 69:151-155. https://doi.org/10.1111/j.1399-3054.1987.tb01959.x
  86. Seo PJ. Kim MJ. Park JY. Kim SY. Jeon J. Lee YH. Kim J. Park CM. 2010. Cold activation of a plasma membrane tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant J. 61: 661-671. https://doi.org/10.1111/j.1365-313X.2009.04091.x
  87. Sharkey TD. Stitt M. Heineke D. Gerhardt R. Raschke K. Heldt HW. 1986. Limitation of photosynthesis by carbon metabolism. II. $O_{2}$-insensitive $CO_{2}$ uptake results from limitations of triose phosphate utilization. Plant physiol. 81:1123-1129. https://doi.org/10.1104/pp.81.4.1123
  88. Shen W. Nada K. Tachibana S. 1999. Effect of cold treatment on enzymic and nonenzymic antioxidant activities in leaves of chilling tolerant and chilling sensitive cucumber cultivars. Japan. J. Soc. Hort. Sci. 68:967-973. https://doi.org/10.2503/jjshs.68.967
  89. Sohn YG. Lee YH. Jung JK. Nam JS. Lee JJ. 2006. Alteration of antioxidativ system to chilling stress in tow weedy rice(Oryza stiva L.) germplasms contrasting in sensitivity. Kor. J. Weed Sci. 26(4):397-406.
  90. Sommer A. Neeman F. Steffens JC. Mayer AM. Harel E. 1994. Import, targeting and processing of a plant polyphenol oxidase. Plant Physiol. 105:1301-1311. https://doi.org/10.1104/pp.105.4.1301
  91. Tabaei-Aghdaei SR. Pearce RS. Harrison P. 2003. Sugars regulate cold-induced gene expression and freezing-tolerance in barley cell cultures. J. Exp. Bot. 54:1565-1575. https://doi.org/10.1093/jxb/erg173
  92. Tao F. Yokozawa M. Xu Y. Hayashi Y. Zhang Z. 2006. Climat changes and trends in phenology and yields of field crops in China, 1981-2000. Agricultural and Forest Meteorology 138:82-92. https://doi.org/10.1016/j.agrformet.2006.03.014
  93. Tomlinson PT. Duke ER. Nolte KD. Koch KE. 1991. Sucrose synthase and invertase in isolated vascular bundles. Plant Physiol. 97:1249-1252. https://doi.org/10.1104/pp.97.3.1249
  94. Udagawa Y. Ito T. Gomi K. 1989. Effercts of root temperature on some physiological and ecological characteristics of straqberry plants 'Reiko, grown in nutrient solution. Japan. J. Soc. Hort. Soc. 58:627-663. https://doi.org/10.2503/jjshs.58.627
  95. Uemura M. Steponkus PL. 1999. Cold acclimation in plants: relationship between the lipid composition and the cryostability of the plasma membrane. J. Plant Res. 112: 245-254. https://doi.org/10.1007/PL00013882
  96. Volk S. Feirabend J. 1989. Photoinactivation of catalase at low temperature and its relevance to photosynthetic and peroxide metabolism in leaves. Plant Cell. Env. 12:701-712. https://doi.org/10.1111/j.1365-3040.1989.tb01630.x
  97. Walker MA. Mckersie BD. 1993. Role of ascorbate-glutathion antioxidant system in chilling resistance of tomato. J. Plant Physiol. 141:234-239. https://doi.org/10.1016/S0176-1617(11)80766-2
  98. Wang CY. 1996. Temperature preconditioning affetcts ascorbate antioxidant system in chilled zucchini squash. Postharvest Biol. Technol. 8:29-36. https://doi.org/10.1016/0925-5214(95)00061-5
  99. Wanner LA., and Junttila. 1999. Cold induced freezing tolerance in Arabidopsis. Plant Physiol. 120:391-400. https://doi.org/10.1104/pp.120.2.391
  100. Welling A. Palva ET. 2006. Molecular control of cold acclimation in trees. Physiol. Plant. 127:167-181. https://doi.org/10.1111/j.1399-3054.2006.00672.x
  101. Willekens H. Chamnogpol S. Davey M. Schravdner M. Langebartels C. Van Montagu C. Inze D. Van Camp W. 1997. Catalase is a sink for H2O2 and is indispensable for stress in C3 plants. EMBO J. 16:4806-4816. https://doi.org/10.1093/emboj/16.16.4806
  102. Zeng Y. Yu J. Cang J. Liu L. Mu Y. Wang J. Zhang D. 2011. Detection of sugar accumulation and expression levels of correlative key enzymes in winter wheat (Triticum aestivum) at low temperatures. Biosci. Biotechnol. Biochem. 75:681-687. https://doi.org/10.1271/bbb.100813
  103. Zhang S. Jiang H. Peng S. Korpelainen H. Li C. 2011. Sex-related differences in morphological, physiological, and ultrastructural responses of populus cathayana to chilling. J. Exp. Box. 62:675-686. https://doi.org/10.1093/jxb/erq306
  104. Zhao FY. Wang XY. Zhao YX Zhang H. 2006. Transferring the suaeda salsa glutathione S-transferase and catalase gene enhances low temperature stress resistance in transgenic rice seedlings. J. Plant Physiol. Mol. Biol. 32:231-238.