DOI QR코드

DOI QR Code

Effects of the Dielectric Constant and Thickness of a Feed Substrate on the Characteristics of an Aperture Coupled Microstrip Patch Antenna

급전 기판의 유전상수 및 두께가 개구면 결합 마이크로스트립 패치 안테나의 특성에 미치는 영향

  • Bak, Hye-Lin (School of Electronic Engineering, Soongsil University) ;
  • Koo, Hwan-Mo (School of Electronic Engineering, Soongsil University) ;
  • Kim, Boo-Gyoun (School of Electronic Engineering, Soongsil University)
  • 박혜린 (숭실대학교 정보통신전자공학부) ;
  • 구환모 (숭실대학교 정보통신전자공학부) ;
  • 김부균 (숭실대학교 정보통신전자공학부)
  • Received : 2014.04.04
  • Accepted : 2014.06.23
  • Published : 2014.07.25

Abstract

Effects of the dielectric constant and thickness of a feed substrate on the bandwidth and radiation characteristics of an aperture coupled microstrip patch antenna (ACMPA) are investigated. The optimized return loss bandwidth of an ACMPA increases without the degradation of radiation characteristics as the feed substrate dielectric constant increases for the same feed substrate thickness. The optimized return loss bandwidth of an ACMPA with the dielectric constant of a feed substrate of 10, which is compatible with the high dielectric constant monolithic microwave integrated circuit (MMIC) materials, increases without the degradation of radiation characteristics as the thickness of a feed substrate decreases. The ACMPA configuration is suitable for integration with MMICs.

개구면 결합 마이크로스트립 패치 안테나(aperture coupled microstrip patch antenna; ACMPA)의 급전 기판의 유전상수와 두께가 안테나 대역폭과 방사특성에 미치는 영향에 대하여 연구하였다. 급전 기판의 두께가 같은 여러 가지 유전상수의 급전기판을 가지는 ACMPA의 최적화된 반사손실 대역폭은 방사특성의 저하 없이 급전기판의 유전상수가 감소할수록 대역폭이 증가한다. MMIC(monolithic microwave integrated circuit)와 집적화가 가능한 높은 유전상수(${\epsilon}_r=10$)를 가지는 급전 기판을 사용한 ACMPA의 최적화된 반사손실 대역폭은 방사특성의 저하 없이 급전 기판의 두께가 감소할수록 대역폭이 증가한다. 따라서 ACMPA는 MMIC와 집적화하기에 좋은 구조를 가진 패치 안테나이다.

Keywords

References

  1. Z. N. Chen and K. M. Luk, "Antennas for Base Stations in Wireless Communications," New York, McGraw-Hill, 2009.
  2. R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, "Microstrip Antenna Design Handbook," 2nd edition, Boston.London, Artech House, 2000.
  3. W. S. T. Rowe, R. B. Waterhouse, "Theoretical Investigation on the Use of High Permiittivity Materials in Microstrip Aperture Stacked Patch Antennas," IEEE Trans. Antennas Propag., vol. 51, no. 9, pp. 2484-2486, Sep. 2003. https://doi.org/10.1109/TAP.2003.816383
  4. R. B. Waterhouse and W. Rowe, "MMIC compatible printed antennas," Electronics Lett., Vol. 39, No. 21, pp. 1493-1495, October 2003. https://doi.org/10.1049/el:20030964
  5. R. B. Waterhouse, "Stacked Patches Using High and Low Dielectric Constant Material Combinations," IEEE Trans. on Antennas and Propag., Vol. 47, No. 12, pp. 1767-1771, December 1999. https://doi.org/10.1109/8.817651
  6. K. Hettak, G. Delisle, and M. Boulmalf, "A Novel Integrated Antenna for Millimeter-Wave Personal Communication Systems," IEEE Trans. on Antennas and Propag., Vol. 46, No. 11, pp. 1757-1758, November 1998. https://doi.org/10.1109/8.736643
  7. R. B. Waterhouse and D. Novak, "Design of Patch Antennas for Integration in OEICs for Optical Fiber Picocellular Systems", IEEE/LEOS RF Optoelectron. Symp. Kyoto, Japan, pp. 89-92, December 1996.
  8. F. Croq and D. M. Pozar, "Millimeter wave design of wide-band aperture-coupled stacked microstrip antennas," IEEE Trans. Antennas Propag., vol. 39, no. 12, pp. 1770-1776, Dec. 1991. https://doi.org/10.1109/8.121599
  9. J.-F. Zurcher, "The SSFIP: a global concept for high-performance broadband planar antennas," Electron. Lett., Vol. 24, No. 23, pp. 1433 - 1435, Nov. 1988. https://doi.org/10.1049/el:19880979
  10. F. Croq and A. Papiernik, "Large bandwidth aperture-coupled microstrip antenna," Electron. Lett., Vol. 26, No. 16, pp.1293 - 1294 , Aug. 1990. https://doi.org/10.1049/el:19900832
  11. Y. Lu, H. Wang and D. G. Fang, "A Novel Wideband Aperture-Coupled Circularly Polarized Stacked Patch Antenna," The 2006 4th Asia-Pacific Conference on Environmental Electromagnetics, pp. 904-907, August, 2006.
  12. S. K. Pavuluri, C. Wang, and A. J. Sangster, "High Efficiency Wideband Aperture-Coupled Stacked Patch Antennas Assembled Using Millimeter Thick Micromachined Polymer Structure," IEEE Trans. Antennas Propag., vol. 58, no. 11, pp. 3616-3621, Nov. 2010. https://doi.org/10.1109/TAP.2010.2071334
  13. HM Koo, YM Yoon, BG Kim, "Bandwidth Enhancement of an Aperture Coupled Microstrip Patch Antenna Using a Shunt Stub," Journal of the Institute of Electronics Engineers of Korea-TC, Vol. 49, no. 2, pp. 39-49, Feb, 2012.
  14. S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, "Design of Wide-Band Aperture-Stacked Patch Microstrip Antennas," IEEE Trans. Antennas Propag., vol. 46, no. 9, pp. 1245-1251, Sep. 1998. https://doi.org/10.1109/8.719966
  15. D. M. Pozar, "A review of aperture coupled microstrip antennas: History, operation, development, and applications," University of Massachusetts at Amherst [Online]. Available: http://www.ecs.umass.edu/ece/pozar/aperture.pdf May 1996.
  16. P. L. Sullivan and D. H. Schaubert, "Analysis of an Aperture Coupled Microstrip Antenna," IEEE Trans. Antennas Propag., vol. 34, no. 8, pp. 977-984, August. 1986. https://doi.org/10.1109/TAP.1986.1143929
  17. TY Kim, JW Park, BG Kim, "Impact of a Square Grounded Dielectric Substrate on the Radiation Characteristics of a Rectangular Microstrip Patch Antenna,"Journal of the Institute of Electronics Engineers of Korea-TC, Vol. 46, no. 6, pp 118-127, June 2009.

Cited by

  1. The Bandwidth Enhancement of an Aperture Coupled Microstrip Patch Antenna Using Variation of an Aperture Width vol.52, pp.1, 2015, https://doi.org/10.5573/ieie.2015.52.1.048
  2. Design of a Circularly Polarized Aperture Coupled Microstrip Patch Antenna with an Asymmetric Aperture vol.16, pp.6, 2018, https://doi.org/10.14801/jkiit.2018.16.6.25