DOI QR코드

DOI QR Code

Synthesis of Organic-Inorganic Nanohybrids Using Epoxy-Functionalized Alkoxysilane and Their Properties

Epoxy-Functionalized Alkoxysilane을 이용한 Organic-Inorganic Nanohybrids합성과 물성

  • Kim, Bo-Young (Department of Advanced Materials Engineering, Kangwon National University) ;
  • Kim, Juyoung (Department of Advanced Materials Engineering, Kangwon National University)
  • 김보영 (강원대학교 신소재공학과) ;
  • 김주영 (강원대학교 신소재공학과)
  • Received : 2014.05.13
  • Accepted : 2014.05.29
  • Published : 2014.06.30

Abstract

Two kinds of epoxy-functionalized alkoxysilane (EAS) compounds (EAS-MS and EAS-ES) were successfully synthesized through the reaction between epoxy resin (YD-128) and aminopropyl trimethoxysilane (APTMS) or aminopropyl triethoxysilane (APTES). By the hydrolysis-polycondensation reaction of EAS compounds with 3-Glycidyloxypropyl trimethoxysilane (GPTMS) and Tetraethyl orthosilicate (TEOS), silica/epoxy nanohybrids could be prepared at various compositions of EAS to GPTMS/TEOS. Prepared nanohybrids were yellow transparent and miscible with various organic solvents. By the reaction silica/epoxy nanohybrids with curing agents (TETA or acrylic acid), cured hybrids films could be obtained. These cured films showed higher thermal stability and mechanical property compared to cured neat epoxy resin. TEM and AFM images showed formation of nano-sized silica nanoparticles within cured hybrid films.

연구에서는 aminopropyl trimethoxysilane (APTMS)과 aminopropyl triethoxysilane (APTES)를 비스페놀계 에폭시 수지와 각각 반응시켜서 2가지 종류의 epoxy-functionalized alkoxysilane (EAS)을 합성하였다. 합성된 EAS를 다양한 혼합비로 3-glycidyloxypropyl trimethoxysilane (GPTMS)과 tetraethyl orthosilicate (TEOS)와 혼합하고 hydrolysis-polycondensation 반응을 통해서 졸 상태의 실리카/에폭시 나노하이브리드 물질을 제조하였다. 제조된 나노 하이브리드 졸은 투명한 노란색이며 다양한 유기 용매와 상용성을 나타내었다. 경화제(TETA와 acrylic acid)와 나노 하이브리드 졸과 반응을 통해서 경화필름이 얻어졌으며, 나노 하이브리드 경화 필름은 순수 에폭시 수지 경화 필름에 비해서 높은 내열성과 기계적 물성을 나타내었다. TEM과 AFM 측정 결과, 나노 크기의 실리카 입자들이 경화된 하이브리드 필름 내에 생성, 분산되어있는 것을 확인할 수 있었다.

Keywords

References

  1. M. S. Son, S. W. Han, D. H. Han, Y. K. Kim, J. H. Lim, I. Kim, and C. S. Ha, Polym. Bull., 60, 713 (2008). https://doi.org/10.1007/s00289-008-0904-z
  2. K. M. Kim, Polym. Sci. Tech., 20, 131 (2009).
  3. J. H. Ahn, I. Kim, and C. S. Ha, Polym. Sci. Tech., 20, 141 (2009).
  4. T. Scherzer and U. Decker, Radiat. Phys. Chem., 55, 615 (1999). https://doi.org/10.1016/S0969-806X(99)00257-1
  5. S. J. Park, K. S. Kim, J. R. Lee, B. G. Mim, and Y. K. Kim, Journal of the Korean Society for Composite Materials, 17, 10 (2004).
  6. Y. C. Kim, O. J. Cha, and K. M. Kim, Journal of Adhesion and Interface, 11, 168 (2010).
  7. D. H. Lee and D. H. Kim, Korean Chem. Eng. Res., 47, 332 (2009).
  8. C. H. Lee and K. M. Kim, Journal of Adhesion and Interface, 10, 117 (2009).
  9. J. H. Park and S. W. Kim, Theories and Applications of Chem. Eng., 9, 2726 (2003).
  10. J. Y. Kim, S. J. Kim, and J. S. Na, Appl. Chem. Eng., 21, 514 (2010).
  11. S. M. Choi, E. K. Lee, and S. Y. Choi, Elastomer, 43, 147 (2008).
  12. K. S. Kim, S. Y. Oh, E. S. Kim, H. C. Shin, and S. J. Park, Elastomers and Composites, 45, 12 (2010).
  13. T. W. Yoo, J. S. Woo, J. H. ji, B. M. Lee, and S. S. Kim, Biomaterials Research, 16, 32 (2012).
  14. Z. Hua, W. Shishan, and S. Jian, Chem. Rev., 108, 3893 (2008). https://doi.org/10.1021/cr068035q
  15. S. Patel, A. Bandyopadhyay, V. Vijayabaskar, and A. K. Bhowmick, Polymer, 46, 8079 (2005). https://doi.org/10.1016/j.polymer.2005.06.067
  16. T. Ogoshi, H. Itoh, K. M. Kim, and Y. Chujo, Macromolecules, 35, 334 (2002). https://doi.org/10.1021/ma010819c
  17. J. S. Kim and B. S. Bae, Ceramist, 14, 51 (2011).
  18. D. P. Kang, H. Y. Park, M. S. Ahn, I. H. Myung, T. J. Lee, J. H. Choi, and H. J. Kim, Polymer, 29, 242 (2005).

Cited by

  1. Reinforcement of styrene-butadiene/polybutadiene rubber compounds by modified silicas with different surface and networked states vol.134, pp.22, 2017, https://doi.org/10.1002/app.44893