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Abstract Laccase activity of Pleurotus ostreatus is significantly increased by the addition of apple pomace. Among various
conditions, the best concentration of apple pomace and cultivation time for the production of laccase by P. ostreatus was 2.5%
and 9 days, respectively. Reverse transcription polymerase chain reaction analyses of laccase isoenzyme genes, including pox1,
pox3, pox4, poxc, poxa3, and poxa1b, revealed a clear effect of apple pomace on transcription induction. Our findings reveal
that the use of apple pomace can be a model for the valuable addition of similar wastes and for the development of a solid-state
fermenter and commercial production of oyster mushroom P. ostreatus.
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Pleurotus ostreatus (white-rot fungi), also known as oyster
mushroom, is commercially important in the world
mushroom market. In addition to its use in food
production, P. ostreatus has received increasing attention
for applications in bio-bleaching and the catalysis of
difficult chemical conversions in the paper industry, textile
dye decolorization, and detoxification of environmental
pollutants [1-4]. Therefore, many efforts are being focused
on the molecular characterization of fungal laccases as
well as on improving laccase production levels. Pleurotus
ostreatus excretes the typical laccase isoenzyme POXC [5],
the white laccase isoenzyme POXA1w [6], the heterodimeric
laccase isoenzyme POXA3 [7-9], and POXA1b [10].

Apple and apple products are among the major fruit and

fruit products consumed worldwide. Several million tons
of apple pomace are generated during the processing of
apple products [11]. Apple pomace is a rich source of
nutrients such as carbohydrates, dietary fiber, minerals,
and vitamin C [11]. In addition, apple pomace has been
used as a raw material in applications such as pectin
recovery and the production of enzymes, organic acids,
ethanol, and animal feed [10, 12-16]. Because sustainable
food production and value addition of wastes are among
the most important issues in the agro and food processing
industries, the aim of this study was to investigate the
effect of apple pomace on laccase production by P. ostreatus
mycelium.

Pleurotus ostreatus ASI 2344 was obtained from the Korean
Agricultural Culture Collection (Suwon, Korea) and cultured
on mushroom complete medium (0.45 g KH2PO4, 0.5 g
MgSO4, 1 g K2HPO4, 2 g yeast extract, 2 g bacto peptone,
and 20 g glucose per liter) at 25oC. Apple pomace was
collected from Chungbuk Wonye Nonghyup, Chung-buk,
Korea. The pomace was washed five times with sterilized
distilled water to remove any adhering substances, freeze-
dried, powdered, and passed through a sieve to obtain
uniformly sized particles. The effect of apple pomace on
laccase activity was determined by adding pretreated apple
pomace to the basal medium (2.5% and 5%; w/v). For
laccase enzyme assay and total RNA isolation from mycelia,
2,000 mL flasks containing 500 mL of mushroom complete
medium were inoculated (50 mycelial plugs/flask) with
fresh plugs from the plate and incubated at 25oC for 20
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days with agitation.
Laccase activity was determined via modified oxidation

of 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid;
ABTS; Sigma, St. Louis, MO, USA) as reported previously
[17]. The assay mixture contained 9 μL ABTS (1.8 mM,
Sigma) and 10 μL culture supernatant in 181 μL of sodium
acetate buffer (50 mM, pH 4.5). Oxidation of ABTS was
monitored by determining the increase at 420 nm (ε420,
36,000/M/cm). One unit of laccase activity was defined as
the amount of substrate in micromoles transformed per
minute, reported in units per volume. All experiments
were performed three times by using three replicates for
each set of conditions and each time. 

Zymograms were used to determine laccase activity with
a modified sodium dodecyl sulfate polyacrylamide gel
electrophoresis technique [11, 17, 18]. The separating and
stacking gels were 12% and 5% acrylamide, respectively,
and the electrode reservoir solution was 25 mM Tris, 192
mM glycine, pH 8.4. Gels were stained for laccase activity
using 5 mM ABTS as the substrate. Total extracellular
protein of the culture supernatant was measured using the
Bradford method with bovine serum albumin as the
standard.

Total RNA was prepared using TRIzol reagent (Invitrogen
Life Technologies, Carlsbad, CA, USA) according to the
manufacturer’s instructions. Total RNA (10 μg) was further
processed with RQ1 RNase-free DNase (Promega, Madison,

WI, USA) following the manufacturer’s instructions. For
reverse transcription polymerase chain reaction (RT-PCR)
analysis, the reverse transcription of RNA (1 μg) was
performed in a 20-μL reaction volume using oligo-dT18
and ImProm-II reverse transcriptase (Promega) according
to the manufacturer’s instructions. The PCR reaction was
conducted in a 50-μL reaction mixture containing 10 mM
deoxyribonucleoside triphosphate mixture, 10 pmol of each
specific primer (Table 1), 1 U Taq-polymerase (TaKaRa
Korea Biomedical Inc., Seoul, Korea), 10× PCR buffer
(100 mM Tris-Cl, pH 8.3, 500 mM KCl, and 25 mM MgCl2),
and 1 μL cDNA product. Each reaction included an initial
5 min of denaturation at 94oC, followed by 30 cycles of
amplification (94oC for 15 sec, 60oC for 15 sec, and 72oC for
30 sec), and final extension for 5 min at 72oC. Subsequently,
5 μL of each reaction mixture was separated on a 1.8%
agarose gel. Primers were designed from the laccase cDNAs
poxc (GenBank accession No. Z34848), pox1 (GenBank
accession No. Z34847), poxa1b (GenBank accession No.
AJ005018), pox3 (EMBL accession No. FM202671), pox4
(EMBL accession No. FM202672), and poxa3 (EMBL
accession No. AJ344434). The mRNA levels of genes were
normalized to the mRNA level of the β-actin gene.

To evaluate the effect of apple pomace on laccase
production by P. ostreatus, we tested different culture
conditions with various concentrations of apple pomace.
Laccase activity in the medium with 2.5% (w/v) apple

Table 1. Primers used for reverse transcription polymerase chain reaction

Gene Accession No. Forward (5'-3') Reverse (5'-3')

β-Actin Control tggacaagtcatcaccatcg gaagcacttgcgatgaacaa
pox1 Genbank Z34847 tcactctttgcaggtcatcg cgaagtcgtggtagggtcat
pox3 EMBL FM202672 acattggcacggtctctacc gggtcgcagtcatcgtaaat
pox4 EMBL FM202673 ccggatcaagctggtacatt gggagtagggattggtccat
poxc Genbank Z34848 atccagtagttgtcaacggc cgcttgaggattggtaccat
poxa3 EMBL AJ344434 ggtgttgggtcgtgctctat gatcccaacgatcctctgaa
poxa1b Genbank AJ005018 tcaccatccgatttgtagca taggagtttcgatgggttcg

Fig. 1. A, B, Laccase activity (U/mL) of Pleurotus ostreatus. Time course of laccase activity in culture of P. ostreatus
supplemented with different concentrations of apple pomace (0%, 2.5%, and 5%).
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pomace drastically increased from days 4 to 9 and showed
maximum laccase activity (114.64 U/mL) on day 9 (Fig.
1A). This activity was approximately 280% (30.24 U/mL)
and 90% (60.49 U/mL) higher than that of P. ostreatus with
5% (w/v) and without apple pomace, respectively (Fig. 1B).
This laccase activity was slightly decreased but sustained
from days 9 through 20. The laccase activity in the
medium without apple pomace was drastically increased
from days 1 to 4 and showed maximum laccase activity on
day 4 (76.81 U/mL) (Fig. 1). After day 4, laccase activity
continuously decreased through day 20 (21.77 U/mL) (Fig.
1B). Interestingly, laccase activity in the medium with 5%
apple pomace was slightly increased from days 1 through 9
(30.24 U/mL) but drastically increased from day 9 through
day 20 (97.62 U/mL) (Fig. 1A and 1B). The laccase activity
in the medium with 2.5% and 5% apple pomace was
drastically increased on days 4 and 9, respectively (Fig.
1A). By contrast, the laccase activity in the medium
without apple pomace drastically increased from day 1
through day 4. In the same context, the laccase activity in
the medium without apple pomace began to decrease on
day 4 contrary to laccase activity in the medium with 2.5%
apple pomace. Likewise, the laccase activity in the medium
with 2.5% apple pomace began to decrease on day 9
contrary to laccase activity in the medium with 5% apple
pomace. Interestingly, these obvious laccase activities were
observed at nearly 4-day intervals (Fig. 1A). These results
suggest that P. ostreatus might use the nutrient content of
apple pomace without laccase activity in the initial stages
of cultivation (approximately 4 days) because apple pomace
is rich in carbohydrates, dietary fiber, and minerals [11].
Contrary to expectations, after the addition of two times
more apple pomace, the medium with 5% apple pomace
showed a laccase activity level similar to that measured
after adding 2.5% apple pomace on day 20 (Fig. 1A and
1B). There are several possible explanations for this result.
First, considering that lignin metabolism is part of fungal
secondary metabolism [19], these results may be related to
the fermentation period. Several researchers have reported
that high lignin degradation of lignocellulosic substrates
using P. ostreatus is usually obtained after 60 days of
fermentation [15, 19]. Second, the high viscosity of the
pomace may adversely affect oxygen dissolution, limiting
the growth rate [12]. During the secondary phase of fungal
metabolism, lignin degradation is a strictly oxidative process
and thus requires oxygen partial pressures similar to the
atmospheric value [16]. Third, apple pomace contains several
mineral nutrients, including potassium (0.95%), calcium
(0.06%), sodium (0.2%), magnesium (0.02%), copper (1.1 mg/
L), manganese (8.5~9 mg/L), and iron (230 mg/L) [11]. Copper
is reportedly a strong laccase inducer in several species,
including P. ostreatus [20], Phanerochaete chrysosporium
[18], and Trametes versicolor [21]. Copper induces both
laccase transcription and activity [21], and the increase in
activity is proportional to the amount of copper added.
However, in contrast to other essential metals, copper is

toxic to most fungi even at very low concentrations [22].
In addition, Tlecuitl-Beristain et al. [17] have reported that
high concentrations of copper in culture medium delay the
growth of P. ostreatus until approximately day 8. These
results are consistent with our previous study in which we
reported the growth rate of P. ostreatus with various
concentrations of apple pomace [23]. Interestingly, the
growth of P. ostreatus mycelia was slightly inhibited by
adding 5% or 10% compared to 2.5% apple pomace. To
evaluate the effect of apple pomace on laccase enzyme
production, we further analyzed samples containing 0.25 μg
of protein collected from the culture supernatants and
supplemented with different concentrations of apple pomace
(0%, 2.5%, and 5%) on different days (4, 9, and 19) using
native polyacrylamide gel electrophoresis. As shown in Fig.
2, remarkable increases in laccase activities were observed
in the samples with additions of 2.5% (on both days 9 and
19) and 5% (on day 19) apple pomace (Fig. 2). Even
though the highest intensity was observed in the sample
without apple pomace on day 4, no significant increase in
activity was detected in that sample compared to the
activity shown in Fig. 1.

To validate and differentiate the effects of apple pomace
on mRNA transcription levels of various laccase isoenzyme
genes including pox1, pox3, pox4, poxc (formerly pox2),
poxa3, and poxa1b, we conducted semi-quantitative RT-
PCR. RT-PCR analyses clearly revealed that apple pomace
had an effect on the induction of transcription in these
laccase genes. Although the laccase activity of the sample
cultured in the medium with 2.5% of apple pomace for 4
days was significantly less than those with other cultivation
times (Fig. 2), RT-PCR showed the highest transcription
level with 2.5% of apple pomace supplementation on day 4
(Fig. 3). Moreover, three genes (poxc, poxa3, and poxa1b)
showed a transcription level higher than that of other
genes in the cultures with 2.5% of apple pomace at all

Fig. 2. Zymogram of laccase isoenzymes in culture supernatants
of Pleurotus ostreatus. Samples containing 0.25 µg of proteins
collected from the culture supernatants supplemented with
different concentrations of apple pomace (0%, 2.5%, and 5%)
on different days (4, 9, and 19) were used. Staining was
performed with 5 mM 2,2'-azinobis (3-ethylbenzothiazoline-
6-sulfonic acid) in 50 mM sodium acetate buffer (pH 5.2).
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times analyzed. In addition, the transcription level of
poxa1b increased depending on cultivation time with 5%
apple pomace supplementation. Studies of the genes coding
for laccase isoenzymes in P. ostreatus have thus far
identified four genes and their corresponding cDNAs: poxc
(previously named pox2), pox1 (coding for a laccase
isoenzyme not yet identified), poxa1b, and poxa3 [24]. In
addition, Pezzella et al. [24] have isolated three new laccase
genes (pox3, pox4, and pox5) from P. ostreatus and assessed
their expression in cultures with or without the addition of
inducers (copper sulfate or ferulic acid) using RT-PCR
analysis. Although no RNA transcript of pox5 could be
detected, pox3 and pox4 were expressed under all conditions
and in the presence of inducers (both copper sulfate and
ferulic acid), respectively. The results, shown in Fig. 3, also
revealed that pox3 and pox4 were expressed in cultures
with and without the addition of apple pomace, although
no transcript of pox5 could be detected in culture with 5%
apple pomace on both days 4 and 19. RT-PCR analyses
revealed that overall high levels of transcripts were observed
on day 4 of cultivation with 2.5% apple pomace. This
behavior could have been due to a direct effect of apple
pomace addition (with an optimal concentration of 2.5%)
on laccase gene transcription during the early phase of
fungal growth. However, the maximum laccase activities
were observed on days 9 and 19 of cultivation with 2.5%
and 5% of apple pomace, respectively, as shown in Fig. 1.
High concentrations of apple pomace could result in oxidative
stress (discussed above) at an advanced stage of fungal
growth and could be responsible for late transcriptional
induction [25]. The results of this investigation indicate
that when apple pomace is added to the substrate in an
attempt to increase laccase activity, its effect depends on
the concentration of apple pomace.
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