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Abstract During a survey of marine fungi from the waters surrounding Jeju Island, Korea, several Penicillium strains were isolated
from seawater and marine sponges. Based on morphological characteristics and phylogenetic analyses of the internal transcribed
spacer and RNA polymerase subunit II, four strains were identified as Penicillium antarcticum, a fungus that, to the best of our
knowledge, had not been previously reported in Korea. Here, we provide detailed descriptions of the morphological
characteristics and extracellular enzyme activities of the four strains.
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Penicillium species are among the most common fungi
isolated from various outdoor and indoor environments
[1-5]. This genus is of interest, as it produces a variety
of compounds that are harmful or useful to humans,
including mycotoxins, antibiotics, herbicides, antioxidants,
insecticides, and anticancer compounds [4]. In particular,
marine-derived Penicillium species are potential sources
of unique bioactive compounds that are produced
because of the physiochemical conditions of marine
environments, such as extreme pressure, salinity, and
temperature [6-8].

In Korea, over 90 Penicillium species have been recorded,
with most isolated from terrestrial environments [9-11].
Marine-derived Penicillium species in Korea are poorly
studied, and therefore, their diversity is not well known.
Recently, several bioresource banks were established by the
Ministry of Oceans and Fisheries of Korea to promote the
exploration of marine biodiversity and biological resources.
The present study forms part of the Ministry’s long-term

project to collect marine fungi in Korea. During the re-
identification of marine Penicillium isolates by using molecular
methods, we found a species that was not previously
recorded in Korea—Penicillium antarcticum (four strains)—
which belongs to the subgenus Aspergilloides, section
Canescentia. In this study, we identified this species by
using the nucleotide sequences of the internal transcribed
spacer (ITS) and partial RNA polymerase subunit II (rpb2),
described the macro- and micro-morphological characteristics
in detail, and tested the strains for extracellular enzyme
activity.

MATERIALS AND METHODS

Materials. Seawater and marine sponges were collected
from Jeju Island, Korea in 2011. Marine sponges were
processed for culture by adding two volumes of sterile
seawater, followed by thorough homogenization using a
blender. Before culturing, all the samples were diluted ten-
fold with sterile seawater. For fungal cultures, 100 μL of
each dilution was plated on potato dextrose agar (PDA;
4 g/L potato infusion, 20 g/L dextrose, 18 g/L agar, and
750 mL/L seawater), yeast extract peptone glucose agar
(5 g/L yeast extract, 5 g/L peptone, 10 g/L glucose, 18 g/L
agar, and 750 mL/L seawater), and glucose yeast extract
agar (0.1 g/L yeast extract, 5 g/L glucose, 18 g/L agar, and
750 mL/L seawater). The plates were incubated at 25oC for
7~15 days, until the morphology of the cultured fungus
could be distinguished, and then each Penicillium strain
was picked and transferred to a new PDA plate. The strains
isolated in this study were stored in 20% glycerol at −80oC
at two separate institutions: the Seoul National University
Fungus Collection (SFC) and Korea Institute of Ocean
Science and Technology (Table 1).
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DNA extraction, amplification, and sequencing.
Genomic DNA was extracted using the modified
cetyltrimethylammonium bromide extraction protocol
described by Rogers and Bendich [12]. Two genomic
regions for each of the four isolates, ITS and regions 5~7
of rpb2, were amplified and sequenced. PCR reactions
were performed using ITS1F and ITS4 [13] and RPB2-
5F_Eur and RPB2-7CR_Eur [14] primer sets, according to
previously described methods [15]. PCR amplification was
performed in a C1000 thermal cycler (Bio-Rad, Richmond,
CA, USA) using Maxime PCR PreMix with StarTaq
(Intron Biotechnology Inc., Seoul, Korea). Each reaction
had a final volume of 20 μL and contained 10 pmol of each
primer and 10 ng of DNA. The PCR products were
electrophoresed on a 1% agarose gel stained with loading
STAR (Dyne Bio, Seoul, Korea), and purified using the
Expin PCR Purification Kit (GeneAll Biotechnology, Seoul,
Korea), according to the manufacturer’s instructions.
Sequencing was performed in both forward and reverse
directions by using the corresponding PCR primers and an
ABI Prism 3700 genetic analyzer (Life Technologies,
Gaithersburg, MD, USA) at the DNA Synthesis and
Sequencing Facility, Macrogen (Seoul, Korea).

Sequence analysis. Sequences were assembled, proofread,
edited, and aligned using the MEGA5 software [16]. The
resulting consensus sequences were deposited in GenBank
(accession Nos. in Table 1). Multiple sequence alignments
were performed using the default settings of MAFFT v7
[17], and were checked and optimized by eye, with
ambiguously aligned positions adjusted manually. Maximum
likelihood phylogenetic analyses were performed separately
for each gene, using RAxML v8.0.2 [18] under the
GTRGAMMA model of evolution for tree inference and
1,000 bootstrap replicates.

Morphological analysis. To observe macroscopic culture
characteristics, the strains were inoculated at three points
on Czapek yeast autolysate (CYA) agar, yeast extract sucrose
agar, malt extract agar (MEA; Oxoid, Basingstoke, UK),
and 25% glycerol nitrate (G25N) agar and incubated at
25oC for 7 days. In addition, CYA plates were inoculated
and incubated for 7 days at 4oC, 30oC, and 37oC. After
incubation, the culture characteristics were recorded using
the models described by Pitt [1] and Frisvad et al. [4]. All
the culture color names and codes were based on the

‘Methuen Handbook of Colour’ [19]. To observe microscopic
characteristics, isolate mounts were prepared in lactic acid
from colonies grown on MEA, and conidiophores were
washed with a drop of ethanol to remove the excess spores.
Microscopy was performed using a Nikon Eclipse 80i light
microscope (Nikon, Tokyo, Japan).

Enzyme activity assays. Extracellular alginase, endoglucanase,
and β-glucosidase activities were assessed for each strain
by using plate screening methods; enzyme activity was
assessed based on the formation of clear zones surrounding
the colonies [20]. Alginase activity was assayed by growing
the fungi on modified peptone yeast extract salt agar
supplemented with 1% alginic acid sodium salt (Sigma-
Aldrich, St. Louis, MO, USA) as the primary carbon
source [21]. After incubation for 5 days, the plates were
flooded with 10% cetylpyridinium chloride monohydrate
(Sigma-Aldrich) for 10 min. Endoglucanase activity was
assayed by growing the fungi on cellulolysis basal medium
agar supplemented with 2% carboxymethylcellulose (Sigma-
Aldrich) as the primary carbon source [22]. After incubation
for 5 days, the plates were flooded with 0.5% Congo red
(Sigma-Aldrich) for 1 min that was then replaced by 1 M
NaCl. β-Glucosidase activity was assayed by growing the
fungi for 5 days on cellulolysis basal medium agar
supplemented with 0.5% D-cellobiose (Sigma-Aldrich) as
the primary carbon source [23]. Next, the plates were
flooded with 0.5% Congo red or 10 min that was then
replaced by 1 M NaCl.

RUSULTS AND DISCUSSION

Phylogenetic analysis. ITS and rpb2 alignments were
494 and 913 bp long, respectively. Molecular analyses were
performed using BLAST to compare ITS and rpb2 sequences
to those of the type strains available on GenBank. First,
ITS sequence analysis was performed on broad taxonomic
sampling across Penicillium species to determine the overall
placement of the strains in the section Aspergilloides. rpb2
sequences have been shown to be excellent markers for
species identification in Penicillium section Aspergilloides
[14]; we sequenced rpb2 for all the strains and compared
these data against those of the type strains in Genbank.
The four strains had identical ITS sequences that showed
99.3%, 100%, and 99.8% sequence similarity to Penicillium
canescens NRRL 910, Penicillium coralligerum CBS 123.65,

Table 1. Strain information and GenBank accession numbers for Penicillium antarcticum

Strain No. Substrate Locality Date
Accession No.

ITS rpb2

SFC20140101-M745 Sea water Jeju, Korea Feb 2011 KJ636505 KJ636508
SFC20140101-M746 Sponge Jeju, Korea Feb 2011 KJ527436 KJ527366
SFC20140101-M749 Sponge Jeju, Korea Feb 2011 KJ636506 KJ636509
SFC20140101-M838 Sponge Jeju, Korea Feb 2011 KJ636507 KJ636510

ITS, internal transcribed spacer; rpb2, RNA polymerase subunit II.
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and Penicillium novae-zeelandiae NRRL 2128, respectively
(ITS tree is not shown). The four strains also had identical
rpb2 sequences. All the strains formed a monophyletic
group with P. antarcticum CBS 100492 (100% bootstrap
value), with 100% sequence similarity. This clade was
clearly distinct from the species identified as being highly
similar based on ITS analyses (P. canescens NRRL 910, P.
coralligerum CBS 123.65, and P. novae-zeelandiae NRRL2128)
(Fig. 1).

Morphological characterization. Morphologies are
shown in Fig. 2. In comparison to the original description
for P. antarcticum [2], all the morphological characteristics
are similar, excluding the growth rate on CYA and G25N
media, where our isolates exhibited slightly faster rates. We
believe that these slight differences are due to morphological
variation between the strains.

Penicillium antarcticum A. D. Hocking & C. F. McRae
1999 (Fig. 2).
Colonies grown on CYA for 7 days at 25oC (Fig. 2A):
33~45 mm in diameter, velvety, strong sporulation at the
center, but light at the margins. Dull green (25E3) at the
center, 1~2 mm white mycelia at the margins, exudates
absent (except SFC20140101-M749, producing small droplets
of clear exudate), soluble pigment not produced, reverse
grayish yellow (4B4).
Colonies grown on CYA for 7 days at 4oC: No growth.
Colonies grown on CYA for 7 days at 30oC: 19~25 mm
in diameter.
Colonies grown on CYA for 7 days at 37oC: No growth.
Colonies grown on MEA for 7 days at 25oC (Fig. 2B):
34~37 mm in diameter, velvety, and weak sporulation. Dull
green with 1-mm white mycelia at the margins, exudates
absent, soluble pigment not produced, margin entire, reverse

light brown.
Colonies grown on G25N for 7 days at 25oC (Fig. 2C):
20~25 mm in diameter, velvety and weak sporulation.
White with 1-mm white mycelia at the margins, exudates
absent, soluble pigment not produced, margin entire, reverse
pale yellow. Conidiophores (Fig. 2D~2G) were mostly
biverticillate on MEA, arising from aerial hyphae or agar
surface. Stipes were simple, smooth walled, 105~230
(~350) × 3.2~3.8 μm. Phialides were ampulliform, 8.2~10.8
× 2.3~3.3 μm. Conidia (Fig. 2H) were subglobose to globose,
smooth-walled or finely roughened, 2.2~3.1 μm in diameter.

Enzyme activity. All the strains were screened for
alginase, endoglucanase, and β-glucosidase extracellular
enzyme activities. Only β-glucosidase activity was observed
in the strains, generating clear zones approximately 6~
11.5 mm in diameter (Table 2, Fig. 3). Marine-derived
Penicillium species are known as important producers
of extracellular enzymes [24, 25]. β-Glucosidase and
endoglucanase are important enzymes for cellulose
degradation [22]. Yoon et al. [23] reported that the majority
of the tested species from terrestrial environments in Korea
show strong β-glucosidase activity. Although several
Penicillium species have been known to produce alginase
activity [24] and endoglucanase activity [26-28], these
activities were not observed in this species.

Fig. 1. Phylogenetic tree for Penicillium antarcticum and related
species based on maximum likelihood analysis of RNA
polymerase subunit II (rpb2). Bootstrap scores of > 50 are
presented at the nodes. The scale bar indicates the number
of nucleotide substitutions per site, and the letter T indicates
the ex-type strains.

Fig. 2. Morphologies of Penicillium antarcticum SFC20140101-
M745 (A~C), 7-day-old cultures, at 25oC. Left to right, first
row, Czapek yeast autolysate (CYA) agar (A), malt extract agar
(MEA) (B), 25% glycerol nitrate (G25N) agar (C); second
row, all obverse, CYA reverse, MEA reverse, G25N reverse;
Conidiophores (D~G); Conidia (H) (scale bars: D~H = 10μm).
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Penicillium antarcticum has been isolated from soil, nest
scrapings, Antarctic moss [2], Cedrus deodara stems [29],
and food [30]. Four Penicillium strains were isolated from
seawater and sponge substrates and identified as P.
antarcticum based on two nucleotide sequences, ITS and
rpb2. To the best of our knowledge, this is the first record
of P. antarcticum isolated from a marine environment in
Korea. All the strains had no alginase and endoglucanase
activities, but exhibited strong β-glucosidase activity.
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