DOI QR코드

DOI QR Code

Xylitol Sensitivity among Oral Streptococci

  • Na, Hee Sam (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Kim, Sheon Min (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Song, Yu Ri (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Choi, Yoon Hee (Division of Hematology-Oncology, Department of Internal Medicine, Dongnam Institute of Radiology and Medical Science) ;
  • Chung, Jin (Department of Oral Microbiology, School of Dentistry, Pusan National University)
  • 투고 : 2014.03.24
  • 심사 : 2014.04.18
  • 발행 : 2014.06.30

초록

Xylitol is a five-carbon sugar alcohol that inhibits the growth of oral streptococci, including Streptococcus mutans. In this study, we tested xylitol sensitivity among the oral streptococci. We also compared nucleotide homology of putative fructose phosphotransferase system (PTS) and xylitol sensitivity, since xylitol is transported via the fructose PTS. Among the tested Streptococci, S. pneumonia showed the highest resistance to xylitol while S. gordonii and S. sanguinis showed the most sensitive growth inhibition. These streptococci could be grouped according to their xylitol sensitivity. S. mutans and S. salivarius showed similar bacterial growth inhibition by xylitol. S. mitis, S. oralis, S. pneumonia, S. intermedius and S. anginosus showed relatively low sensitivity to xylitol. When the genetic homologies of five fructose PTSs were compared among the tested streptococci, closely related streptococci showed similar sensitivity to xylitol. Taken together, fructose PTSs may mediate the sensitivity to xylitol in oral streptococci.

키워드

참고문헌

  1. Herzberg MC. Platelet-streptococcal interactions in endocarditis. Crit Rev Oral Biol Med. 1996;7:222-236. https://doi.org/10.1177/10454411960070030201
  2. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986;50:353-380.
  3. Whiley RA, Beighton D. Current classification of the oral streptococci. Oral Microbiol Immunol. 1998;13:195-216. https://doi.org/10.1111/j.1399-302X.1998.tb00698.x
  4. Facklam R. What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev. 2002;15:613-630. https://doi.org/10.1128/CMR.15.4.613-630.2002
  5. Cvitkovitch DG, Boyd DA, Hamilton IR. Regulation of sugar transport via the multiple sugar metabolism operon of Streptococcus mutans by the phosphoenolpyruvate phosphotransferase system. J Bacteriol. 1995;177: 5704-5706. https://doi.org/10.1128/jb.177.19.5704-5706.1995
  6. Escalante A, Salinas Cervantes A, Gosset G, Bolivar F. Current knowledge of the Escherichia coli phosphoenolpyruvatecarbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Appl Microbiol Biotechnol. 2012;94:1483-1494. https://doi.org/10.1007/s00253-012-4101-5
  7. Vadeboncoeur C, Pelletier M. The phosphoenolpyruvate: sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev .1997;19:187-207. https://doi.org/10.1111/j.1574-6976.1997.tb00297.x
  8. Van Loveren C. Sugar alcohols: what is the evidence for caries-preventive and caries-therapeutic effects? Caries Res. 2004;38:286-293. https://doi.org/10.1159/000077768
  9. Na HS, Kim SM, Kim S, Choi YH, Chung J. Effect of Xylitol on various Oral bacteria. Int J Oral Biol. 2013;38:175-180. https://doi.org/10.11620/IJOB.2013.38.4.175
  10. Assev S, Rolla G. Evidence for presence of a xylitol phosphotransferase system in Streptococcus mutans OMZ 176. Acta Pathol Microbiol Immunol Scand B. 1984; 92:89-92.
  11. Assev S, Rolla G. Further studies on the growth inhibition of Streptococcus mutans OMZ 176 by xylitol. Acta Pathol Microbiol Immunol Scand B. 1986;94:97-102.
  12. Trahan L, Bareil M, Gauthier L, Vadeboncoeur C. Transport and phosphorylation of xylitol by a fructose phosphotransferase system in Streptococcus mutans. Caries Res. 1985;19:53-63. https://doi.org/10.1159/000260829
  13. Bar A. Caries prevention with xylitol. A review of the scientific evidence. World Rev Nutr Diet. 1988;55: 183-209.
  14. Tanzer JM. Xylitol chewing gum and dental caries. Int Dent J. 1995;45:65-76.
  15. Trahan L. Xylitol: a review of its action on mutans streptococci and dental plaque--its clinical significance. Int Dent J. 1995;45:77-92.
  16. Lengeler JW, Jahreis K, Wehmeier UF. Enzymes II of the phospho enol pyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. Biochim Biophys Acta. 1994;1188:1-28. https://doi.org/10.1016/0005-2728(94)90017-5
  17. Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 1993;57:543-594.
  18. Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev. 2006;70:939-1031. https://doi.org/10.1128/MMBR.00024-06
  19. Abranches J, Chen YY, Burne RA. Characterization of Streptococcus mutans strains deficient in EIIAB Man of the sugar phosphotransferase system. Appl Environ Microbiol. 2003;69:4760-4769. https://doi.org/10.1128/AEM.69.8.4760-4769.2003
  20. Ramseier TM, Negre D, Cortay JC, Scarabel M, Cozzone AJ, Saier MH, Jr. In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium. J Mol Biol. 1993;234:28-44. https://doi.org/10.1006/jmbi.1993.1561
  21. Hellinga HW, Evans PR. Mutations in the active site of Escherichia coli phosphofructokinase. Nature 1987; 327:437-439. https://doi.org/10.1038/327437a0
  22. Alpert CA, Frank R, Stuber K, Deutscher J, Hengstenberg W. Phosphoenolpyruvate-dependent protein kinase enzyme I of Streptococcus faecalis: purification and properties of the enzyme and characterization of its active center. Biochemistry 1985;24:959-964. https://doi.org/10.1021/bi00325a023
  23. Weigel N, Kukuruzinska MA, Nakazawa A, Waygood EB, Roseman S. Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by enzyme I of Salmonella typhimurium. J Biol Chem. 1982;257:14477-14491.
  24. Koch S, Sutrina SL, Wu LF, Reizer J, Schnetz K, Rak B, Saier MH, Jr. Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants. J Bacteriol. 1996;178:1126-1133. https://doi.org/10.1128/jb.178.4.1126-1133.1996