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  The etiology of most psychiatric disorders is still incompletely understood. However, growing evidence 
suggests that stress is a potent environmental risk factor for depression and anxiety. In rodents, 
various stress paradigms have been developed, but psychosocial stress paradigms have received more 
attention than non-social stress paradigms because psychosocial stress is more prevalent in humans. 
Interestingly, some recent studies suggest that chronic psychosocial stress and social isolation affects 
mainly anxiety-related behaviors in mice. However, it is unclear whether chronic non-social stress 
induces both depression- and anxiety-related phenotypes or induces one specific phenotype in mice. 
In the present study, we examined the behavioral consequences of three chronic non-social stress 
paradigms: chronic predictable (restraint) stress (CPS), chronic unpredictable stress (CUS), and 
repeated corticosterone-HBC complex injection (RCI). Each of the three paradigms induced mild to 
severe depression/despair-like behaviors in mice and resulted in increased immobility in a tail 
suspension test. However, anxiety-related phenotypes, thigmotaxis and explorative behaviors, were not 
changed by the three paradigms. These results suggest that depression- and anxiety-related phenotypes 
can be dissociated in mouse stress models and that social and non-social stressors might affect brain 
circuits and behaviors differently.
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INTRODUCTION

  Recent large-scale epidemiological studies have revealed 
that major depression and anxiety are the most common 
psychiatric disorders in humans [1,2]. Although the etiology 
of depression- and anxiety-related disorders is still in-
completely understood, stress is a potent environmental 
risk factor for these disorders. Chronic exposure to stress 
induces modifications in brain physiology and neural 
circuits. Stress triggers the rapid activation of the hypo-
thalamic-pituitary-adrenal (HPA) axis in animals, leading 
to the release of corticosteroids from the adrenal cortex 
[3-5]. Corticosteroids pass the blood brain barrier and reach 
various brain regions via the circulation. Binding of cortico-
steroids to two related receptor molecules, the glucocorti-
coid receptor and the mineralocorticoid receptor, induces 

the following structural and functional changes in brain 
neurons: regression of dendritic processes, loss and shrink-
age of dendritic spines, inhibition of neurogenesis, distur-
bance of synaptic plasticity, and neurodegeneration [6-8]. 
These deleterious effects of corticosteroids on neurons are 
believed to cause depression- and anxiety-related behav-
ioral changes in animals. In agreement with these ob-
servations, the hyperactivity of the HPA axis, hyper-
cortisolemia, or prolonged glucocorticoid administration is 
associated with depression- and anxiety-related disorders 
[9,10]. In addition, depression- and/or anxiety-like behav-
iors can be induced in rodents by various chronic stress 
paradigms in which animals are exposed to several weeks 
of repeated physical stressors or social stressors.
  Interestingly, however, some chronic stress paradigms in-
duce both anxiety and depression-like behaviors in animals, 
while others have been reported to increase one specific 
phenotype [11-16]. Considering the high comorbidity of de-
pression and anxiety in humans, the coexistence of these 
disorders in rodents also seems possible. However, there 
is a possibility that the different behavioral outcomes 
among the previous studies were caused by different stress 
paradigms. This idea raises the question whether distinct 
types of stressors induce different behavioral changes. A 
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Fig. 1. Schematic representation of the experimental design. 
Experimental groups were exposed to chronic predictable (res-
traint) stress (CPS), chronic unpredictable stress (CUS), or re-
peated corticosterone-HBC complex injection (RCI).

few recent reports on social stress paradigms provide evi-
dence supporting this hypothesis. For example, mice ex-
posed to social defeat or chronic subordinate colony housing 
displayed increased anxiety behaviors without changes in 
depression-related behaviors [12-14]. In addition, social iso-
lation also produced similar behavioral changes in mice 
[17]. These findings have led us to examine whether chronic 
stress without social factors selectively induces depres-
sion-like behaviors or both depression- and anxiety-like be-
haviors in mice. In the present study, we investigated the 
effects of three non-social stress paradigms on depression- 
and anxiety-related behaviors. Our study provides ex-
perimental evidence that social and non-social chronic 
stressors differentially affect depression and anxiety. 
Although psychosocial stress is more prevalent in humans, 
the dissociation of critical risk factors for depression and 
anxiety may provide clues to understand the neural mecha-
nisms of psychiatric disorders.

METHODS

Animals

  Four-week-old male C57BL/6N mice were purchased 
from Orient Bio (Gyeonggi, Korea). Upon arrival, the ani-
mals were acclimated for 1 week in our specific patho-
gen-free barrier facility before the experiments began. 
During the rearing and behavioral experiments, mice were 
housed in groups of 3∼4/cage and monitored daily for signs 
of bullying, hair loss, or fight wounds. Except for stress ses-
sions, animals were allowed free access to food and water 
and were maintained on a 12-hour light-dark cycle (lights 
on 08:00 h) at 23±1oC with a relative humidity of 50∼60%. 
The maintenance of all animals and related experiments 
were performed according to institutional guidelines for the 
care and use of animals in research (SNU-120323-1).

Experimental design for behavioral experiments

  To investigate the effect of chronic non-social stress on 
depression- and anxiety-like behaviors in mice, male litter-
mates were assigned to experimental or control groups at 
35~38 days after birth. Each experimental group was ex-
posed to a different type of chronic non-social stress for 3 
weeks, as illustrated in Fig. 1. All of the three stress para-
digms have been reported to cause stress responses, includ-

ing increased corticosterone levels, in rodents [18-22]. For 
chronic predictable stress (CPS), mice were placed in a 
well-ventilated 60-ml syringe for 2 hours once per day be-
tween 17:00 and 19:00. During the 21 restraint sessions, 
mice were able to move laterally, but not vertically. For 
chronic unpredictable stress (CUS), mice were exposed in 
a random order to a variety of chronic stressors, including 
a wet cage (12 h), light-dark cycle reversal (24 h), white 
noise (100 dB, 12 h), cold water swim (10°C, 1 h), restraint 
(2 h), cage shake (30 rpm, 12 h), and electric foot shocks 
(10 scrambled shocks with duration of 2 s over 120 min). 
Animals were subjected to one stressor daily for 21 days. 
For repeated corticosterone injection (RCI), corticosterone- 
HBC complex was purchased from Sigma-Aldrich (St. 
Louis, MO) and dissolved in physiological saline. Mice re-
ceived subcutaneous injections of the corticosterone-HBC 
complex (20 mg/kg) once per day for 21 days. The control 
animals for the repeated corticosterone-HBC injections 
were administered vehicle. All solutions were sterilized 
through a 0.22-μm filter before injection. 

Open field test

  Each animal was placed in the center of an open field 
apparatus with opaque walls (40×40×40 cm) in a dimly lit 
room. The behavior of each mouse was monitored for 30 
minutes by video recording. The total distance traveled and 
time spent in the entire open field and in the center (20×20 
cm) were calculated using video tracking software (Ethovi-
sion XT, Noldus, Netherlands). To avoid possible abnormal 
behaviors caused by the tail suspension test, the open field 
test was performed 1 day before the tail suspension test.

Tail suspension test

  Mice were suspended by their tails from a steel bar using 
adhesive tape in a chamber with opaque walls. The distance 
between the floor of the chamber and the steel bar was ap-
proximately 40 cm. Mice that climbed onto their tail or fell 
off during the test were excluded from analysis. The total 
duration of immobility over the 6 min observation period 
was scored by an experimenter blinded to the experimental 
details.

Statistical analysis

  Data were analyzed using IGOR Pro (WaveMetrics, OR, 
USA) and SPSS (Statistical Package for the Social Sciences, 
IBM, NY, USA) software. Statistical significance was de-
termined by parametric two-tailed Student's t-tests and 
nonparametric Mann-Whitney-Wilcoxon tests. All data and 
error bars are expressed as the mean±s.e.m.

RESULTS

Effect of chronic non-social stress on body weight

  Because weight changes have been observed in rodent 
models of chronic stress [23-26], we measured the daily 
body weight of mice during the stress period. As shown in 
Fig. 2A, CPS significantly reduced body weight. Repeated 
restraint caused weight loss during the first week and in-
hibited body weight gain through the end of the stress 
paradigm. After 3 weeks, stressed animals gained 0.7% of 
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Fig. 2. Effect of 3-week non-social stress on body weight. The body 
weight of mice during the period of CPS (A), CUS (B), and RCI 
(C). (D) Body weights of the stressed groups after the stress phase. 
Data were normalized to each control group (dashed line).

Fig. 3. Chronic non-social stress increases depression-like 
behaviors. Minute-by-minute analysis of the time spent immobile 
during the tail suspension test in mice exposed to CPS (A), CUS 
(B), and RCI (C). (D) The total time spent immobile during the 
6-minute test in each stress group was normalized to each control
group (dashed line).

body weight (22.12±0.30 g and 22.25±0.23 g at weeks 0 and 
3, respectively; n=9), whereas the body weight of control 
mice increased 9.3% (22.05±0.19 g and 24.10±0.21 g at 
weeks 0 and 3, respectively; n=9). These results suggest a 
significant interaction between body weight gain and treat-
ment (p＜0.001, Student's t-test and Mann-Whitney- 
Wilcoxon test).
  To investigate the relationship between the predictability 
of stress and the reduction of body weight, we next exam-
ined the effect of chronic unpredictable non-social stress on 
body weight (Fig. 2B). Similar to CPS, weight gain during 
the 3 weeks was greater in the control animals (15.2%; 21.0 
±0.66 g and 24.20±0.78 g at weeks 0 and 3, respectively; 
n=9) than in the stressed animals (6.2%; 20.63±0.68 g and 
21.88±0.77 g at weeks 0 and 3, respectively; n=8). This re-
sult indicates that CUS reduces body weight gain in mice 
and that the predictability of stress is not important for 
its effect on body weight gain (CPS: 92.34±0.96% of control; 
CUS: 91.05±1.01% of control; p＞0.1; Fig. 2D).
  We next examined the effect of predictable non-physical 
stress on body weight. Mice that received RCI showed com-
parable body weight gain to control mice that received re-
peated injections of vehicle (Fig. 2C). The control mice (n 
=10, 19.69±0.52 g and 22.75±1.30 g at weeks 0 and 3, re-
spectively) and the corticosterone-HBC complex-treated 
mice (n=11, 19.35±0.57 g and 22.16±0.85 g at weeks 0 and 
3, respectively) gained 15.5% and 14.5% of their original 
body weight, respectively. This difference did not reach 
statistical significance (p＞0.1). Therefore, in contrast with 
CPS or CUS, RCI had no effect on body weight gain (Fig. 
2D).

Effect of chronic non-social stress on depression-like 
behaviors

  To investigate depression-like behaviors, we assessed im-

mobility/despair behaviors of mice using the tail-suspension 
test [27]. In this test, immobility is thought to reflect a state 
of despair and of giving up trying to escape from an un-
comfortable situation.
  Mice exposed to CPS displayed high levels of immobility 
in the tail-suspension test (Fig. 3A). During the 6-minute 
test, the total duration of immobility in the control group 
and in the stressed group was 82.1±18.7 s and 147.63±13.1 
s, respectively (n=8 pairs, p＜0.05; Fig. 3D). We next exam-
ined the effect of CUS on depression-like behaviors. Similar 
to repeated restraint, the mice exposed to CUS spent more 
time immobile compared to the control mice (control: n= 
9, 126.7±10.4 s; CUS: n=8, 197.3±15.2 s; p＜0.01; Fig. 3B, 
3D). Consistently, a minute-by-minute analysis of the time 
spent immobile revealed that the CUS group became im-
mobile significantly sooner than the control mice (Fig. 3B). 
We further tested RCI, predictable non-physical stress, on 
depression-like behaviors. As shown in Fig. 3C and Fig. 3D, 
RCI significantly increased the amount of time mice re-
mained immobile by 42.1% compared to the vehicle-treated 
control mice (control: n=10, 150.5±29.9 s; RCI: n=11, 213.9± 
26.4 s; p＜0.05; Fig. 3C, 3D). Together, these results sug-
gest that each of the three chronic non-social stress para-
digms caused elevated levels of depression-like behaviors 
in the tail-suspension test, regardless of the predictability.

Effect of chronic non-social stress on anxiety-related 
behaviors

  To test whether chronic non-social stress induces both de-
pression- and anxiety-related phenotypes, we examined 
anxiety-related behaviors using the open field test [28,29]. 
In this test, the degree of thigmotaxis, the tendency to re-
main close to the walls, is considered an index of anxiety 
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Fig. 4. Normal locomotor activity and thigmotaxic behaviors in mice with chronic non-social stress. Examples of exploratory paths (A), 
distance moved (B), and thigmotaxis (C) from the CPS and control groups are shown. Thigmotaxis levels are expressed as the percent 
time spent in the periphery. Exploratory paths, distance moved, and thigmotaxis from the CUS (D-F) and RCI (G-I) groups are compared 
with each control. Total distance moved (J) and thigmotaxis (K) during the 30-minute test were normalized to the control group (dashed 
line) and summarized.

in mice [30]. Because anxious animals are less likely to ex-
plore new environments, they show enhanced thigmotaxis 
and reduced locomotor activity in the open field chamber. 
We analyzed thigmotaxis and locomotor activity by measur-
ing the time spent in the peripheral areas and the distance 
moved in the open field chamber, respectively.
  Mice exposed to CPS displayed normal locomotor activity 
and thigmotaxis levels compared to their control litter-
mates during all test periods (Fig. 4A-C). In addition, when 
we analyzed the total distance moved (control: n=9, 
61.90±4.96 m; CPS: n=9, 56.67±6.22 m; p＞0.1; Fig. 4J) and 
the time spent in the peripheral area (1656.0±37.9 s vs. 
1703.0±29.4 s; p＞0.1; Fig. 4K) during the 30-minute test 
periods, we could not find any differences between the two 
groups. We next examined CUS on anxiety-related behav-
iors (Fig. 4D). Although mice exposed to CUS showed a ten-
dency to be hypoactive (Fig. 4E) and enhanced thigmotaxis 
(Fig. 4F), the difference did not reach statistical sig-
nificance during any test period. When we analyzed the 
whole test session, we also found no significant effects of 
CUS on total distance moved (control: n=9, 97.10±5.21 m; 
CUS: n=8, 88.47±9.03 m; p＞0.1; Fig. 4J) and thigmotaxis 
(1536.0±43.2 s vs. 1614.7±40.6 s; p＞0.1; Fig. 4K). Additio-
nally, we examined the effects of RCI on anxiety-related 
behaviors (Fig. 4G). Again, we did not detect any significant 
differences in distance moved (Fig. 4H) and time spent in 
the peripheral areas (Fig. 4I) between the corticosterone- 
and vehicle-treated groups. As shown in Fig. 4J and Fig. 
4K, both groups of mice showed similar levels of exploratory 
activity (control: n=10, 31.39±4.12 m; RCI: n=11, 29.42±2.62 
m; p＞0.1) and thigmotaxis (control: 1741.8±18.7 s; RCI: 
n=11, 1732.3±18.7 m; p＞0.1) during the entire test session.

  Taken together, these results indicate that each of the 
three chronic non-social stress paradigms had no effect on 
anxiety-related behaviors of mice.

DISCUSSION

  Although stress is a risk factor for depression- and anxi-
ety-related disorders, the differential effects of social and 
non-social stress on these neuropsychiatric disorders are 
poorly understood. In the present study, we examined the 
effect of three chronic non-social stress paradigms on mouse 
behavior. We found that CPS, CUS, and RCI induced de-
pression/despair-like behaviors without affecting anxi-
ety-related behaviors. 
  According to human studies [31-34], depression and anxi-
ety show high comorbidity rates. Approximately half of pa-
tients with major depressive disorder met the criteria for 
generalized anxiety disorder, and the majority of patients 
with generalized anxiety disorder also have major depres-
sive disorder [33,35]. These findings imply that brain cir-
cuits associated with depression partly overlap with those 
of anxiety disorder and that certain types of stress can mod-
ify brain circuits associated with both disorders [5,36]. 
Although the exact brain circuits that mediate depression 
and anxiety are still unclear, recent human imaging studies 
identified some brain areas dysregulated in depression and 
anxiety disorders, including the prefrontal cortex, sub-
genual cingulate cortex, hippocampus, and amygdala [37, 
38]. These brain areas are implicated in the regulation of 
stress responses as well as emotional functions [39]. In 
mammals, stress activates the HPA axis and results in the 
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secretion of stress hormones (corticosteroids) from the adre-
nal cortex. Although the neural mechanism that translates 
stressful stimuli into the activation of the paraventricular 
nucleus (PVN) in the hypothalamus is still incompletely un-
derstood, the hippocampus appears to inhibit the PVN 
through the ventral subicular projection to PVN-connected 
GABAergic neurons in the bed nucleus of the stria termi-
nalis (BNST) [5]. In contrast, the amygdala appears to acti-
vate hypothalamic areas through excitatory and double 
GABAergic projections to the PVN [4]. In accordance with 
this observation, hippocampal stimulation decreases plas-
ma corticosteroids in rats and humans, while stimulation 
of the amygdala produces the opposite effect [40,41]. 
Furthermore, overactivation of the amygdala is associated 
with depression and anxiety [37,38].
  In the present study, the three non-social stress para-
digms induced a reduction in body weight gain and in-
creased immobility in the tail-suspension test (Fig. 2 and 
3). Although decreased weight gain under stress does not 
necessarily reflect the loss of appetite in animals, the loss 
of interest in enjoyable activities (anhedonia) is one of the 
core symptoms of major depressive disorder. In addition, 
despair (feelings of hopelessness) is the most common 
symptom of depression. Our study indicates that depres-
sion- and anxiety-related circuits modified by stress can be 
dissociated in the mouse brain, and distinct types of stress 
affect different brain circuits. 
  There is a possibility that social stress modifies brain cir-
cuits related to anxiety as well as depression, while non-so-
cial stress influences depression-related brain circuits. 
Interestingly, psychosocial stress rather than non-social 
stress seems more relevant in humans. Thus, the social 
component of stress might be one of the possible ex-
planations for the high rate of comorbidity between anxiety 
and depression in human patients. Consistent with this 
idea, several recent lines of evidence suggest a strong asso-
ciation between social stress and anxiety in rodents. Social 
isolation, a mild social stress paradigm, selectively induced 
anxiety-related behavioral changes in mice without affect-
ing depression-like behaviors [17]. In addition, repeated so-
cial defeat and chronic subordinate colony housing caused 
increased anxiety-like behavior in mice, but depression-like 
behaviors were not changed by these social stress para-
digms [12-15]. However, some experimental evidence ar-
gues for a selective effect of chronic social stress on anxiety 
[11,14,16]. Interestingly, a significant interaction between 
behavioral changes and time of stress was observed. 
Stressed animals displayed reduced exploratory activity 
one week after stress, but anhedonia could be observed 3 
weeks after chronic social stress [11]. These results imply 
that prolonged social stress (more than 3 weeks) might in-
duce depression- as well as anxiety-related behavioral 
changes in rodents [14,16]. Whether prolonged (more than 
4 weeks) non-social stress influences anxiety-related brain 
circuits and induces anxiety-related behavioral changes as 
well as depression deserves further investigation.
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