DOI QR코드

DOI QR Code

Characterization of Two Novel mAbs Recognizing Different Epitopes on CD43

  • Kim, Soseul (Department of Pathology, College of Medicine, Chungbuk National University) ;
  • Hong, Jeong Won (Research Institute, DiNonA Inc.) ;
  • Cho, Woon-Dong (Department of Pathology, College of Medicine, Chungbuk National University) ;
  • Moon, Yoo Ri (Department of Pathology, College of Medicine, Chungbuk National University) ;
  • Yoon, Sang Soon (Research Institute, DiNonA Inc.) ;
  • Kim, Min-Young (Department of Pathology, College of Medicine, Chungbuk National University) ;
  • Hong, Kwon Pyo (Research Institute, DiNonA Inc.) ;
  • Lee, Yong-Moon (Department of Pathology, College of Medicine, Chungbuk National University) ;
  • Yi, Jae Hyuk (MedClaris Inc.) ;
  • Ham, Young Jun (Research Institute, DiNonA Inc.) ;
  • Rah, Hyung Chul (Graduate School of Health Science Convergence, College of Medicine, Chungbuk National University) ;
  • Kim, Seung Ryul (Graduate School of Health Science Convergence, College of Medicine, Chungbuk National University) ;
  • Song, Hyung Geun (Department of Pathology, College of Medicine, Chungbuk National University)
  • Received : 2014.04.18
  • Accepted : 2014.06.01
  • Published : 2014.06.30

Abstract

JL1, a specific epitope on CD43, is a potential biomarker for the diagnosis of acute leukemia. Although qualitative assays for detecting leukemia-specific CD43 exist, there is a need to develop quantitative assays for the same. Here, we developed two novel monoclonal antibodies (mAbs), 2C8 and 8E10, recognizing different epitopes on CD43. These clones are capable of pairing with YG5, another mAb against JL1 epitope, because they were selectively obtained using sandwich ELISA. Antigens recognized by 2C8 and 8E10 were confirmed as CD43 by western blotting using the CD43-hFC recombinant protein. When expression on various leukemic cell lines was investigated, 2C8 and 8E10 displayed a disparity in the distribution of the epitope. Enzyme assays revealed that these mAbs recognized a sialic acid-dependent epitope on CD43. Using normal thymus and lymph node paraffin-embedded tissues, we confirmed a difference in the epitopes recognized by the two mAbs that was predicted based on the maturity of the cells in the tissue. In summary, we developed and characterized two mAbs, 2C8 and 8E10, which can be used with YG5 in a sandwich ELISA for detecting leukemia-specific CD43.

Keywords

References

  1. Remold-O'Donnell, E. 1995. CD43 cluster report. In Leukocyte typing V: white cell differentiation antigens. S. F. Schlossman, L. Bounsell, W. R. Gilks, J. Harlan, T. Kishimoto, T. morimoto, J. Ritz, S. Shaw, R. Silverstein, T. Springer, T. Tedder, R. Todd, eds. Oxford University Press. New York. p.1697-1701.
  2. Carlsson, S. R. and M. Fukuda. 1986. Isolation and characterization of leukosialin, a major sialoglycoprotein on human leukocytes. J. Biol. Chem. 251: 12779-12786.
  3. Shelley, C. S., E. Remold-O'Donnell, A. E. Davis, A. E. 3rd, G. A. Bruns, F. S. Rosen, M. C. Carroll, and A. S. Whitehead. 1989. Molecular characterization of sialophorin (CD43), the lymphocyte surface sialoglycoprotein defective in Wiskott-Aldrich syndrome. Proc. Natl. Acad. Sci. USA 86: 2819-2823. https://doi.org/10.1073/pnas.86.8.2819
  4. Manjunath, N., C. Mariangela, A. Margarett, and A. Blair. 2002. Negative regulation of T-cell adhesion and activation by CD43. Nature. 377: 535-539.
  5. Ardman, B., M. A. Sikorski, and D. E. Staunton. 1992. CD43 interferes with T-lymphocyte adhesion. Proc. Natl. Acad. Sci. USA. 89: 5001-5005. https://doi.org/10.1073/pnas.89.11.5001
  6. Wooseok, S. and J. Z. Hermann. 2009. CD43 processing and nuclear translocation of CD43 cytoplasmic tail are required for cell homeostasis. Blood 114: 3567-3577. https://doi.org/10.1182/blood-2009-06-228791
  7. Rosenstein, Y., J. K. Park, W. C. Hahn, F. S. Rosen, B. E. Bierer, and S. J. Burakoff. 1991. CD43, a molecule defective in Wiskott-Aldrich syndrome, binds ICAM-1. Nature 354: 233-235. https://doi.org/10.1038/354233a0
  8. Shin, Y. K., E. Y. Choi, S. H. Kim, J. Chung, D. H. Chung, W. S. Park, K. C. Jung, H. S. Kim, S. Park, H. J. Kim, M. H. Park, C. K. Min, C. C. Kim, and S. H. Park. 2001. Expresion of Leukemia-Associated Antigen, JL1, in Bone Marrow and Thymus. Am. J. Pathol. 158: 1473-1480. https://doi.org/10.1016/S0002-9440(10)64098-9
  9. Park, C. S. and S. H. Park. 1999. Diagnostic usefulness of monoclonal antibody for T lymphoblastic lymphoma/acute lymphoblastic leukemia-specific JL1 antigen in paraffin embedded tissue. Korean. J. Pathol. 33: 1033-1038.
  10. Sahin, U., O. Tureci, and M. Pfreundschuh M. 1997. Serological identification of human tumor antigens. Curr. Opin. Immunol. 9: 709-716. https://doi.org/10.1016/S0952-7915(97)80053-2
  11. Chung, J. K., Y. So, M. K. Hong, S. R. Choi, J. M. Jeong, D. S. Lee, M. C. Lee, C. S. Koh, E. Y. Choi, and S. H. Park. 1997. In vitro and in vivo properties of murine monoclonal antibody for a novel immature thymocyte-differentiated antigen, JL1. Nucl. Med. Biol. 24: 433-437. https://doi.org/10.1016/S0969-8051(97)80011-X
  12. Park, W. S., Bae, Y. M., Chung, D. H., Kim, T. J., Choi, E. Y., Chung, J. K., Lee, M. C., Park, S. Y. and Park, S. H. 1998. A cell surface molecule, JL1; a specific target for diagnosis and treatment of leukemias. Leukemia 12: 1583-1590. https://doi.org/10.1038/sj.leu.2401161
  13. Jeon, Y. K., Min, H. S., Lee, Y. J., Kang, B. H., Kim, E. J., Park, H. J., Bae, Y. M., Lee, H. G., Park, W. S., Song, H. G., Jung, K. C. and Park, S. H. 2011. Targeting of developmentally regulated epitope of CD43 for the treatment of acute leukemia. Cancer. Immunol. Immunother. 60: 1697-1706. https://doi.org/10.1007/s00262-011-1066-7
  14. Frizzera, G, C. D. Wu, and G. Inghirami. 1999. The usefulness of immunophenotypic and genotypic studies in the diagnosis and classification of hematopoietic and lymphoid neoplasma. Am. J. Clin. Pathol. 111: S13-S39.
  15. Konikova, E., M. Glasova, J. Kusenda, and O. Babusikova. 1998. Intracullular markers in acute myeloid leukemia diagnosis. Neoplasma 45: 282-291.
  16. Ohashi, T., K. Mawatari, K. Sato, M. Tokeshi, and T. Kitamori. 2009. A micro-ELISA system for the rapid and sensitive measurement of total and specific immunoglobulin E and clinical application to allergy diagnosis. Lab Chip 9: 991-995. https://doi.org/10.1039/b815475a
  17. Cho, W. D. 2012. Detection of Lung Adenocarcinoma Using CD66c Specific Sandwich ELISA. Master Thesis, Chungbook University.
  18. Shin, M. H. 2009. A novel monoclonal antibody 8F5 specific for CD66c of Lung Adenocarcinoma. Master Thesis, Chungbook University.
  19. Scott, A. M. and S. Welt. 1997. Antibody-based immunological therapies. Curr. Opin. Immunol. 9: 717-722. https://doi.org/10.1016/S0952-7915(97)80054-4

Cited by

  1. Critical role of protein L-isoaspartyl methyltransferase in basic fibroblast growth factor-mediated neuronal cell differentiation vol.49, pp.8, 2014, https://doi.org/10.5483/bmbrep.2016.49.8.020
  2. Therapeutic afucosylated monoclonal antibody and bispecific T-cell engagers for T-cell acute lymphoblastic leukemia vol.9, pp.2, 2014, https://doi.org/10.1136/jitc-2020-002026