A Study on a Safety Life Cycle of IEC 61508 for Functional Safety

기능안전을 위한 IEC 61508의 안전수명주기에 관한 연구

  • Kim, Sung Kyu (Dept. of Industrial and Management Engineering, Graduate School, Kyonggi University) ;
  • Kim, Yong Soo (Dept. of Industrial and Management Engineering, Kyonggi University)
  • 김성규 (경기대학교 대학원 산업경영공학과) ;
  • 김용수 (경기대학교 산업경영공학과)
  • Received : 2014.01.18
  • Accepted : 2014.03.14
  • Published : 2014.03.25

Abstract

The IEC 61508 standard was established to specify the functional safety of E/E/PE safety-related systems. Safety life cycle to provide the framework and direction for the application of IEC 61508 is included in this standard. In this paper, we describe overviews, objects, scopes, requirements and activities of each phase in safety life cycle. In addition, we introduce safety integrity level(SIL) which is used for verifying the safety integrity requirements of E/E/PE system and perform a case study to estimate hardware SIL by FMEDA. The SIL is evaluated by two criteria. One of them is the architectural constraints which restrict the maximum SIL by combination of SFF and HFT. The other is the probability of failure which is classified into PFD and PFH based on frequency of demand and calculated by safe or dangerous failure rates.

Keywords

References

  1. 강신주, 이종우 (2013), IEC 61508에 의한 열차제어장치용 PES 구성에 관한 연구, 전기학회논문지, 62권, 8호, 1169-1176.
  2. 김기영 외 (2010), 플로우차트 기반 안전무결성수준 평가 절차, 신뢰성응용연구, 10권, 2호, 107-122.
  3. 김철, 김영진 (2012), FMEDA 기법을 적용한 SIL 등급 판정에 관한 사례연구, IE interface, 25권, 4호, 376-381. https://doi.org/10.7232/IEIF.2012.25.4.376
  4. 김정환 외 (2011), SIL(Safety Integrity Level) 선택에 의한 리스크 감소에 관한 연구, 한국가스학회지, 15권, 5호, 57-62.
  5. 신덕호, 이재훈, 이기서 (2005), 자동열차방호장치와 건널목보안장치간의 인터페이스 안전요구사항에 관한 연구, 철도저널, 8권, 2호, 161-169.
  6. 신덕호 외 (2007), 철도신호 내장형제어기 안전성 향상을 위한 워치독타이머 설계 및 평가, 철도저널, 10권, 6호, 730-734.
  7. 이익성( 2010), 리스크분석에 의한 철도물류 운영기관의 안전경영시스템에 관한 연구, 신뢰성응용연구, 10권, 1호, 73-91.
  8. 진상화 외 (2002), 신뢰도 분석에 근거한 SIS 평가 방법론 개발, 한국가스학회지, 6권, 1호, 66-73.
  9. Catelani, M., Ciani, L. and Luongo, V. (2010), The FMEDA approach to improve the safety assessment according to the IEC61508, Microelectronics Reliability 50, 1230-1235. https://doi.org/10.1016/j.microrel.2010.07.121
  10. FMD-97 (1997), Failure Mode/ Mechanism Distributions 1997.
  11. Goble, W.M. and Brombacher, A.C. (1999), Using a failure modes, effects and diagnostic analysis (FMEDA) to measure diagnostic coverage in programmable electronic systems, Reliability Engineering & System Safety 66, 145-148. https://doi.org/10.1016/S0951-8320(99)00031-9
  12. IEC 61508 (2010), Functional safety of electrical/electronic/programmable electronic safety-related systems.
  13. Kim, S.K. and Kim, Y.S. (2013), An evaluation approach using a HARA and FMEDA for the hardware SIL, Journal of Loss Prevention in the Process Industries 26, 1212-1220. https://doi.org/10.1016/j.jlp.2013.05.009
  14. Labovsky, J., Svandova, Z., Markos, J., and Jelemensky, L. (2007), Model-based HAZOP study of a real MTBE plant. Journal of Loss Prevention in the Process Industries 20, 230-237. https://doi.org/10.1016/j.jlp.2007.03.015
  15. Lundteigen, M.A., Rausand, M. and Utne, I.B. (2009), Integrating RAMS engineering and management with the safety life cycle of IEC 61508. Reliability Engineering & System Safety 94, 1894-1903. https://doi.org/10.1016/j.ress.2009.06.005
  16. Summers, A.E. (1998), Techniques for assigning a target safety integrity level, ISA Transactions 37, 95-104. https://doi.org/10.1016/S0019-0578(98)00010-X
  17. Telcordia SR-332 (2011), Reliability Prediction Procedure for Electronic Equipment.