Development of a Vision Based Machine Tool Presetter

영상 기반 머신툴 프리세터 개발

  • 정하형 (충남대학교 전자공학과) ;
  • 김태연 (충남대학교 전자공학과) ;
  • 박진하 (충남대학교 전자공학과) ;
  • 유준 (충남대학교 전자공학과)
  • Received : 2014.03.25
  • Accepted : 2014.05.30
  • Published : 2014.06.30


Generally, the tool presetter is utilized to align and measure some specific dimensions of a machine tool. It is classified into two types(contact and contactless) according to the measurement method, and the optical sensor based contactless scheme has the advantages of measurement flexibility and convenience. This paper describes the design and realization of an industrial tool presetter using machine vision and linear scaler. Before measurement, the objective tool is attached to the mechanical mount and is aligned with the optical apparatus. After capturing tool images, the suggested image processing algorithm calculates its dimesions accurately, combining the traversing distance from the linear scaler. Experimental results conforms that the present tool presetter system has the precision within ${\pm}20um$ error.

툴 프리세터는 수치제어 공작기계용 공구의 테이퍼부를 기준으로 하여 날끝 치수를 사전에 정렬하기 위한 장치로서 여기에는 접촉과 비접촉, 두 가지 방식이 있다. 광학센서 기반 비접촉 방식은 측정의 유연성과 편리함의 이점을 가지고 있다. 본 논문에서는 선형 스케일러와 머신 비전을 도입한 산업용 툴 프리세터 장비 개발을 다룬다. 측정 전에 대상 공구를 기구부에 고정시키고 광학부를 정렬한다. 공구 영상을 취득한 후 제시된 영상처리 알고리즘은선형 스케일러로부터 광학부의 이동 거리를 조합하여 공구의 정밀한 치수를 계산해낸다. 실험 결과, 본 장비의 정밀도가 ${\pm}20um$ 범위내에 있음을 검증하였다.



  1. H. J. Pahk, Y. M. Hwang, "Dimensional Measurement Using the Machin Vision," Journal of the Korean Society of Precision Engineering, Vol.18, No.3, pp. 10-17, 2001.
  2. D. Stefano, A. Bulgarlli, "A Simple and Efficient Connected Components Labeling Algorithm," Proc. of Image Analysis and Processing, pp.322-327, 1999.
  3. W. Gander, G. Golub, R. Strebel, "Least-Squares Fitting of Circles and Ellipses," Journal of BIT Numerical Mathematics, vol. 34, issue 4, pp.558-578, 1994.
  4. S. J. Kim, S. C. Lee, G. E. Yang, S. J. Yang, M. W. Yoon, "Development of Auto Assembly and Inspection Machine for Automobile Wheel-cap," Proc. of KACC, pp.577-581, 2009.
  5. J. Y. Kim, H. S. Cho, "Vision-Based Part Shape and Misalignment Measurement in Cylindrical Peg-in-Hole Tasks," Journal of Control, Automation, and Systems Engineering, vol. 11, no 7, pp. 615-620, 2005.
  6. Y. C Cho, B. J Choi, J, O Yoon, "A Study on the Development of Backlight Surface Defect Inspection System using Computer Vision" Journal of the Korea Industrial Information System Society, vol .12, no. 3, pp. 116-123, 2007.
  7. I. T Jang, D. W Kim, H. B Kwon, J. H Ahn, "Real time Object Tracking Method Using Multiple Cameras," Journal of the Korea Industrial Information System Society, vol. 17, no. 4, pp. 51-59, 2012.
  8. Y. H Choi, K. D Bu, B. H Koo, "Classification system of fruits by color image processing," Journal of the Korea Industrial Information System Society, vol. 5, no. 3, pp. 65-70, 2000.

Cited by

  1. O-ring Size Measurement Based on a Small Machine Vision Inspection Equipment vol.19, pp.4, 2014,