DOI QR코드

DOI QR Code

Electro-magneto-thermoelastic surface waves in non-homogeneous orthotropic granular half space

  • Received : 2013.01.02
  • Accepted : 2014.02.14
  • Published : 2014.07.25

Abstract

The effect of various parameters on the propagation of surface waves in electro-magneto thermoelastic orthotropic granular non-homogeneous medium subjected to gravity and initial compression has been studied. All material coefficients are obeyed the same exponent-law dependence on the depth of the granular elastic half space. Some special cases investigated by earlier researchers have also been deduced. Dispersion curves are computed numerically and presented graphically.

Keywords

References

  1. Ahmed, S.M. (1999), "Influence of gravity on the propagation of waves in granular medium", Appl. Math. Comput., 101(2-3), 269-280. https://doi.org/10.1016/S0096-3003(98)10006-1
  2. Ahmed, S.M. (2005), "Stoneley waves in a non-homogeneous orthotropic granular medium under the influence of gravity", Int. J. Mathematics Mathematical Sci, 19, 3145-3155. DOI: 10.1155/Ijmms.2005.3145
  3. Bhattacharya, J. (1969), "The possibility of the propagation of Love waves in an intermediate heterogeneous layer lying between two semi-infinite isotropic homogeneous elastic layers", Pure Appl. Geophys., 72(1), 61-71. https://doi.org/10.1007/BF00875693
  4. Bhattacharyya, R.K. (1965), "Rayleigh waves in granular medium", Pure Appl. Geophys., 62(1), 13-22. https://doi.org/10.1007/BF00875283
  5. Britan, A. and Ben-Dor, G. (2006), "Shock tube study of the dynamical behavior of granular materials", Int. J. Multiph. Flow, 32(5), 623-642. https://doi.org/10.1016/j.ijmultiphaseflow.2006.01.007
  6. Bromwich, T.J. (1898), "On the influence of gravity on elastic waves, and, in particular, on the vibrations of an elastic globe", Proceedings of the London Mathematical Society, 30(1), pp. 98-120.
  7. Bullen, K.E. (1965), An Introduction to the Theory of Seismology, Cambridge University Press, pp. 85-99.
  8. Cicco, S. De and Iesan, D. (2013), "Thermal effects in anisotropic porous elastic rods", J. Thermal Stresses, 36(4), 364-377. DOI: 10.1080/01495739.2013.770696
  9. El-Maghraby, N.M. (2008), "A two-dimensional generalized thermoelasticity problem for a half-space under the action of a body force", Journal of Thermal Stresses, 31(6), 557-568. DOI: 10.1080/01495730801978281
  10. Ewing, W.M., Jardetzky, W.S. and Press, F. (1957), Elastic Waves in Layered Media, Mcgraw-Hill, New York, NY, USA.
  11. Hou, P.F., Jiang, H.Y. and Li, Q.H. (2013), "Three-dimensional steady-state general solution for isotropic thermoelastic materials with applications I: general solutions", J. Thermal Stresses, 36(7), 727-747. DOI: 10.1080/01495739.2013.788903
  12. Jeffreys, H. (1959), The Earth, (4th Edition), Cambridge University Press.
  13. Kakar, R. (2013), "Influence of impulsive line source and non-homogeneity on the propagation of SH-wave in an isotropic medium", Interact. Multisc. Mech., Int. J., 6(3), 287-300. DOI: http://dx.doi.org/10.12989/imm.2013.6.3.287
  14. Kakar, R. and Gupta, K.C. (2012), "Propagation of love waves in a non-homogeneous orthotropic layer under 'P' overlying semi-infinite non-homogeneous medium", Global J. Pure Appl. Math., 8(4), 483-494.
  15. Kakar, R. and Gupta, K.C. (2013), "Torsional surface waves in a non-homogeneous isotropic layer over viscoelastic half-space", Interact. Multisc. Mech., Int. J., 6(1), 1-14. https://doi.org/10.12989/imm.2013.6.1.001
  16. Love, A.E.H. (1911), Some Problems of Geodynamics, Dover Publications, New York, NY, USA.
  17. Paria, G. (1960), "Love waves in granular medium", Bull. Calcutta. Math. Soc., 52(4), 195-203.
  18. Peng, C.H. and Liu, D.K. (1998), "Love waves in vertical inhomogeneous media", Eartheq. Eng. Eng. Vib. 18, 1-6.
  19. Sharma, J.N., Kumar, S. and Sharma, Y.D. (2007), "Propagation of Stoneley surface waves in microstretch thermoelastic continua under inviscid fluid loadings", J. Thermal Stresses, 31(1), 18-39. DOI: 10.1080/01495730701737845
  20. Stoneley, R. (1924), "The elastic waves at the surface of separation of two solids", Proceedings of Royal Society, London, UK, 106(738), 416-428. https://doi.org/10.1098/rspa.1924.0079

Cited by

  1. Effects of microstructure and liquid loading on velocity dispersion of leaky Rayleigh waves at liquid–solid interface vol.96, pp.1, 2018, https://doi.org/10.1139/cjp-2016-0343
  2. Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.791
  3. Theoretical and numerical analysis of the influence of initial stress gradient on wave propagations vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.285
  4. Fractional order thermoelastic wave assessment in a two-dimension medium with voids vol.21, pp.1, 2020, https://doi.org/10.12989/gae.2020.21.1.085
  5. Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux vol.23, pp.3, 2014, https://doi.org/10.12989/gae.2020.23.3.217