References
- Ahmed, S.M. (1999), "Influence of gravity on the propagation of waves in granular medium", Appl. Math. Comput., 101(2-3), 269-280. https://doi.org/10.1016/S0096-3003(98)10006-1
- Ahmed, S.M. (2005), "Stoneley waves in a non-homogeneous orthotropic granular medium under the influence of gravity", Int. J. Mathematics Mathematical Sci, 19, 3145-3155. DOI: 10.1155/Ijmms.2005.3145
- Bhattacharya, J. (1969), "The possibility of the propagation of Love waves in an intermediate heterogeneous layer lying between two semi-infinite isotropic homogeneous elastic layers", Pure Appl. Geophys., 72(1), 61-71. https://doi.org/10.1007/BF00875693
- Bhattacharyya, R.K. (1965), "Rayleigh waves in granular medium", Pure Appl. Geophys., 62(1), 13-22. https://doi.org/10.1007/BF00875283
- Britan, A. and Ben-Dor, G. (2006), "Shock tube study of the dynamical behavior of granular materials", Int. J. Multiph. Flow, 32(5), 623-642. https://doi.org/10.1016/j.ijmultiphaseflow.2006.01.007
- Bromwich, T.J. (1898), "On the influence of gravity on elastic waves, and, in particular, on the vibrations of an elastic globe", Proceedings of the London Mathematical Society, 30(1), pp. 98-120.
- Bullen, K.E. (1965), An Introduction to the Theory of Seismology, Cambridge University Press, pp. 85-99.
- Cicco, S. De and Iesan, D. (2013), "Thermal effects in anisotropic porous elastic rods", J. Thermal Stresses, 36(4), 364-377. DOI: 10.1080/01495739.2013.770696
- El-Maghraby, N.M. (2008), "A two-dimensional generalized thermoelasticity problem for a half-space under the action of a body force", Journal of Thermal Stresses, 31(6), 557-568. DOI: 10.1080/01495730801978281
- Ewing, W.M., Jardetzky, W.S. and Press, F. (1957), Elastic Waves in Layered Media, Mcgraw-Hill, New York, NY, USA.
- Hou, P.F., Jiang, H.Y. and Li, Q.H. (2013), "Three-dimensional steady-state general solution for isotropic thermoelastic materials with applications I: general solutions", J. Thermal Stresses, 36(7), 727-747. DOI: 10.1080/01495739.2013.788903
- Jeffreys, H. (1959), The Earth, (4th Edition), Cambridge University Press.
- Kakar, R. (2013), "Influence of impulsive line source and non-homogeneity on the propagation of SH-wave in an isotropic medium", Interact. Multisc. Mech., Int. J., 6(3), 287-300. DOI: http://dx.doi.org/10.12989/imm.2013.6.3.287
- Kakar, R. and Gupta, K.C. (2012), "Propagation of love waves in a non-homogeneous orthotropic layer under 'P' overlying semi-infinite non-homogeneous medium", Global J. Pure Appl. Math., 8(4), 483-494.
- Kakar, R. and Gupta, K.C. (2013), "Torsional surface waves in a non-homogeneous isotropic layer over viscoelastic half-space", Interact. Multisc. Mech., Int. J., 6(1), 1-14. https://doi.org/10.12989/imm.2013.6.1.001
- Love, A.E.H. (1911), Some Problems of Geodynamics, Dover Publications, New York, NY, USA.
- Paria, G. (1960), "Love waves in granular medium", Bull. Calcutta. Math. Soc., 52(4), 195-203.
- Peng, C.H. and Liu, D.K. (1998), "Love waves in vertical inhomogeneous media", Eartheq. Eng. Eng. Vib. 18, 1-6.
- Sharma, J.N., Kumar, S. and Sharma, Y.D. (2007), "Propagation of Stoneley surface waves in microstretch thermoelastic continua under inviscid fluid loadings", J. Thermal Stresses, 31(1), 18-39. DOI: 10.1080/01495730701737845
- Stoneley, R. (1924), "The elastic waves at the surface of separation of two solids", Proceedings of Royal Society, London, UK, 106(738), 416-428. https://doi.org/10.1098/rspa.1924.0079
Cited by
- Effects of microstructure and liquid loading on velocity dispersion of leaky Rayleigh waves at liquid–solid interface vol.96, pp.1, 2018, https://doi.org/10.1139/cjp-2016-0343
- Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.791
- Theoretical and numerical analysis of the influence of initial stress gradient on wave propagations vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.285
- Fractional order thermoelastic wave assessment in a two-dimension medium with voids vol.21, pp.1, 2020, https://doi.org/10.12989/gae.2020.21.1.085
- Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux vol.23, pp.3, 2014, https://doi.org/10.12989/gae.2020.23.3.217