DOI QR코드

DOI QR Code

Fabrication of Biomass Based Polyethylene Furoate Nanofiber by Electrospinning

전기방사법을 이용한 바이오매스 유래 polyethylene furoate 나노섬유 제조에 관한 연구

  • Choi, Hyun-Jin (Thermochemical Energy System R&BD Group, Korea Institute of Industrial Technology) ;
  • Kim, Sun Hee (Green Process and Material R&BD Group, Korea Institute of Industrial Technology) ;
  • Kim, Beak-Jin (Green Process and Material R&BD Group, Korea Institute of Industrial Technology) ;
  • Kim, Sang Bum (Green Process and Material R&BD Group, Korea Institute of Industrial Technology)
  • 최현진 (한국생산기술연구원 고온에너지시스템연구실용화그룹) ;
  • 김선희 (한국생산기술연구원 그린공정소재연구실용화그룹) ;
  • 김백진 (한국생산기술연구원 그린공정소재연구실용화그룹) ;
  • 김상범 (한국생산기술연구원 그린공정소재연구실용화그룹)
  • Received : 2014.02.05
  • Accepted : 2014.06.12
  • Published : 2014.06.30

Abstract

Nanofibers have attracted significant interest in many industrial fields because their high surface area and porosity. In addition, the continued use of petrochemical based polymers has caused the depletion of oil resources and accelerated the greenhouse effect by the emission of carbon dioxide. Therefore, biomass-based polymer has become a very important environmentally friendly alternative. In this study, nanofibers were fabricated by an electrospinning process using biomass based PEF(polyethylene furoate) prepared by the polymerization of 2,5-furandicaboxylic acid and ethylene glycol. Furthermore, the electrospun nanofiber was strongly affected by various parameters, such as the solvent, polymer concentration and electric field. In conclusion, nanofibers with an average fiber diameters of 200 - 700 nm could be prepared at polymer concentration of 15 wt% using HFIP, and their fiber diameter increased with increasing electric field.

나노섬유의 경우 넓은 비표면적과 높은 공기투과도 등으로 인해 여러 분야에 폭넓게 활용될 것으로 기대되고 있다. 또한 석유화학 기반 고분자의 경우 가채연수 제한문제와 이산화탄소 배출에 의한 온실가스 유발문제로 인해 바이오매스 유래 고분자로의 패러다임의 전환이 절실히 요구되고 있는 실정이다. 따라서 본 연구에서는 목질계 셀를로오즈로부터 유래된 플랫폼 화합물 중 퓨란계 유도체인 2,5-furandicaboxylic acid와 ethylene glycol을 이용하여 이를 중합한 바이오매스 유래 PEF(polyethylene furoate)를 제조 및 이를 활용하여 전기방사법을 통해 나노섬유를 제조하고자 하였으며, 또한 전기방사 과정에서 사용된 용매와 고분자 용액의 농도, 전기장의 세기 등의 변수들이 섬유형상에 어떠한 영향을 미치는지 고찰하고자 하였다. 결론적으로, PEF 15 wt%의 농도로 HFIP를 용매로 제조한 고분자 용액을 이용하여 약 200~700 nm의 나노섬유의 제조가 가능하였으며, 섬유의 직경은 인가된 전기장의 세기가 증가할수록 증가하였다.

Keywords

References

  1. W. Sambaer, M. Zatloukal, D. Kimmer, "3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process", Chem. Eng. Sci. vol. 66, pp. 613-623, 2011. DOI: http://dx.doi.org/10.1016/j.ces.2010.10.035
  2. Hinds, WC. Aerosol Technology. p.200-203. John Wiley&Sons, Inc, 1999.
  3. M. M. Demir, I. Yilgor, E. Yilgor, B. Erman, "Electrospinning of polyurethane fibers", Polymer, vol. 44, pp. 3303-3309, 2002. DOI: http://dx.doi.org/10.1016/S0032-3861(02)00136-2
  4. J. Wang, S. -C. Kim, D. Y. H. Pui, "Figure of merit of composite filters with micrometer and nanometer fibers", Aerosol Sci. Technol, vol 42, pp. 722-728, 2008. DOI: http://dx.doi.org/10.1080/02786820802249133
  5. N. Bhardwaj, S. C. Kundu, "Electrospinning: A fascinating fiber fabrication technique", Biotechadv., vol. 28, pp. 325-347, 2010.
  6. P. Gibson, H. Schreuder-Gibson, D. Rivin, "Transport properties of porous membranes based on electrospun nanofibers", Colloids Surf. A: Physicochem. Eng. Asp., vol. 187-188, pp. 469-481, 2001. DOI: http://dx.doi.org/10.1016/S0927-7757(01)00616-1
  7. K. M. Yun, C. J. Hogan, Y. Matsubayashi, M. Kawabe, F. Iskandar, K. Okuyama, "Nanoparticle filtration by electrospun polymer fibers", Chem. Eng. Sci., vol. 62, pp. 4751-4759, 2007. DOI: http://dx.doi.org/10.1016/j.ces.2007.06.007
  8. H. -J. Choi, S. B. Kim, S. H. Kim, M. -H. Lee, "Preparation of electrospun polyurethane filter media and their collection mechanisms for ultrafine particles", J. Air Waste Manage. Assoc., vol. 64, pp. 322-329, 2014. DOI: http://dx.doi.org/10.1080/10962247.2013.858652
  9. J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, N. C. Beck. Tan, "Controlled deposition of electrospun poly(ethylene oxide) fibers", Polymer, vol. 42, pp. 8163-8170, 2001. DOI: http://dx.doi.org/10.1016/S0032-3861(01)00336-6
  10. J. S. Lee, K. H. Choi, H. D. Ghim, S. S. Kim, D. H. Chun, H. Y. Kim, W. S. Lyoo, "Role of molecular weight of atactic poly(vinyl alcohol)(PVA) in the structure and properties of PVA nanofabric prepared by electrospining", J. Appl. Polym. Sci., vol. 93, pp. 1638-1646, 2004. DOI: http://dx.doi.org/10.1002/app.20602
  11. W. -K. Lee, "Carbon Dioxide-reducible Biodegra dable Polymers", Clean Technol., vol. 17, pp. 191-200, 2011
  12. Gomes M., Gandini A., Silvestre A.J.D., Reis B., "Synthesis and Characterization of Poly(2,5-furan dicarboxylate)s Based on a Variety of Diols", J. polym. Sci. Pol. Chem., vol. 49, pp.3759-3768, 2011. DOI: http://dx.doi.org/10.1002/pola.24812
  13. Jiang M., Liu Q., Zhang Q., Ye C., Zhou G., "A Series of Furan-Aromatic Polyesters Synthesized via Direct Esterification Method Based on Renewable Resources", J. polym. Sci. Pol. Chem., vol. 50, pp.1026-1036, 2011. DOI: http://dx.doi.org/10.1002/pola.25859
  14. A. F. Sousa, M. Matos, C. S. R. Freire, A. J. D, Silvestre, J. F. J. Coelho, "New copolyester derived from terephthalic and 2,5-furandicarboxylic acids: A step forwad in the development of biobased polyesters" Polymer vol. 54, pp. 513-519, 2013. DOI: http://dx.doi.org/10.1016/j.polymer.2012.11.081
  15. J. Doshi, D. H. Reneker, "Electrospinning process and application of electrospun fibers" J. Electrost. vol. 35, pp. 151-160, 1995. DOI: http://dx.doi.org/10.1016/0304-3886(95)00041-8
  16. C. Zhang, X. Yuan, L. Wu, Y. Han, J. Sheng, "Study on morphology of electrospun poly(vinyl alcohol) mats", Eur. Polym. J. vol. 41, pp. 423-432, 2005. DOI: http://dx.doi.org/10.1016/j.eurpolymj.2004.10.027