DOI QR코드

DOI QR Code

강제대류에서 펠티에 소자를 이용한 내부터널 구조를 가지는 히트싱크에 관한 연구

A Study on the Heat Sink with internal structure using Peltier Module in the Forced Convection

  • 이민 (부경대학교 대학원 기계공학과) ;
  • 김태완 (부경대학교 기계공학과)
  • Lee, Min (Graduate School of Mechanical Engineering, Pukyong National University) ;
  • Kim, Tae-Wan (Dept. of Mechanical Engineering, Pukyong National University)
  • 투고 : 2014.03.03
  • 심사 : 2014.06.12
  • 발행 : 2014.06.30

초록

전자 장비에서 발생하는 열은 장비의 성능을 저하시킨다. 이러한 장비의 열을 외부로 방출하기 위한 방법으로 히트싱크가 사용된다. 본 연구에서는 내부터널의 형상을 가지는 히트싱크에 대한 냉각 및 히팅성능을 강제대류 상태에서 열전달 특성에 대하여 고찰하였다. 또한, 시간에 따른 히트싱크의 열전달 특성 및 온도분포의 변화에 따른 실험을 수행하였다. 냉각실험에서 전압이 10V일 때, A형상이 B형상 보다 온도가 낮게 나타났고, 가장 좋은 냉각효과를 나타내었다. 히팅실험에서 전압이 13V일 때, 온도가 A형상이 B형상 보다 높게 나타났고, A형상이 효율이 더 좋은 것으로 판단된다.

The heat generated by electronic devices can result in performance degradation. Therefore, a heat sink has been used to release the operating heat into the air outside. This study addressed a methodology for a heat sink with an inner tunnel. Under forced convection conditions, the heat transfer characteristics were different so the cooling and heating performances were studied for the heat sink with an inner tunnel. This was evaluated by performing the experimental test examining the heat transfer characteristics related to the variance in time and temperature distribution. In the cooling experiment, the temperature of the A-shape was lower than that of the B-shape, when the voltage was 10 V. These experimental results indicate the optimal cooling effect. In a heating experiment, the temperature of the A-shape was higher than that of the B-shape, when the voltage was 13 V. The experimental results showed that the temperature and efficiency of the A-shape were higher than those of the B-shape.

키워드

참고문헌

  1. Y. Pan, B. Lin, J. Chen, "Performance analysis and parametric optimal design of an irreversible multi-couple thermoelectric refrigerator under various operating conditions", Appl. Energy, Vol. 84, pp. 882-892, 2007. DOI: http://dx.doi.org/10.1016/j.apenergy.2007.02.008
  2. Y.G. Gurevich, G.N. Logvinov, "Physics of thermoelectric cooling", Semicond Sci. Technol. Vol. 20, pp. 57-64, 2005. DOI: http://dx.doi.org/10.1088/0268-1242/20/12/R01
  3. M. Chen, L.A. Rosendahl, T. Condra, "A three-dimensional numerical model of thermoelectric generators in fluid power systems", Int. J. Heat Mass Transfer, Vol. 54, pp. 345-355, 2011. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.08.024
  4. W.H. Chen, C.Y. Liao, C.I. Hung, "A numerical study on the performance of miniature thermoelectric cooler affected by thomson effect", Appl. Energy, Vol. 89, pp. 464-473, 2012. DOI: http://dx.doi.org/10.1016/j.apenergy.2011.08.022
  5. K.H. Lee, O.J. Kim, "Analysis on the performance of the thermoelectric microcooler", Int. J. Heat Mass Transfer, Vol. 50, pp. 1982-1992, 2007. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.037
  6. J. Luo, L. Chen, F. Sun, C. Wu, "Optimum allocation of heat transfer surface area for cooling load and COP optimization of a thermoelectric refrigerator", Energy Convers Manage, Vol. 44, pp. 3197-3206, 2003. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.09.037
  7. D. Champier, J.P. Bedecarrats, M. Rivaletto, F. Strub, "Thermoelectric power generation from biomass cook stoves", Energy, Vol. 35, pp. 935-942, 2010. DOI: http://dx.doi.org/10.1016/j.energy.2009.07.015
  8. D.R. Lee, "Investigation of optimal cooling performance using peltier module and heat sink", Journal of the korea society for power system engineering, Vol. 10, No. 4, pp. 65-70, 2006.
  9. S.H. Yu, K.S. Lee, S.J. Yook, "Natural convection around a radial heat sink", Int. J. Heat Mass Transfer, Vol. 53, pp. 2935-2938, 2010. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.02.032
  10. R. Arularasan, R. Velraj, "Modeling and simulation of a parallel plate heat sink using computational fluid dynamics", Int. J. Adv. Manuf. Technol., Vol. 51, pp. 415-419, 2010. DOI: http://dx.doi.org/10.1007/s00170-008-1867-9
  11. B.S. Seo, K. J. Lee, J.K. Yang, Y. S. Cho, D.H. Park, "Development and characterization of optimum heat sink for 30W chip on board LED down-light", Transactions on electrical and electronic materials, Vol. 13, No. 6, pp. 292-296, 2012. https://doi.org/10.4313/TEEM.2012.13.6.292
  12. P. Teertstra, M.M. Yovanovich, J. R. Culham, "Analytical forced convection modeling plate fin heat sinks", J. Electronics Manufacturing, Vol. 10, No. 4, pp. 253-261, 2000. DOI: http://dx.doi.org/10.1142/S0960313100000320
  13. C.T. Chen, H.I. Chen, "Multi-objective optimization design of plate-fin heat sinks using a direction-based genetic algorithm", Journal of the Taiwan Institute of Chemical Engineers, Vol. 44, pp. 257-265, 2013. DOI: http://dx.doi.org/10.1016/j.jtice.2012.11.012
  14. K.T. Chiang, C.C. Chou, N.M. Liu, "Application of response surface methodology in describing the thermal performances of pin-fin heat sinks", International Journal of Thermal Sciences, Vol. 48, pp. 1196-1205, 2009. DOI: http://dx.doi.org/10.1016/j.ijthermalsci.2008.10.009
  15. Y.A. Cengel, "Heat Transfer A Practical Approach 2nd edition", McGraw-Hill, Boston, 2003.

피인용 문헌

  1. A Study on the Warpage of Injection Molded Parts for the rapid Cooling and Heating Device vol.16, pp.8, 2015, https://doi.org/10.5762/KAIS.2015.16.8.5074