DOI QR코드

DOI QR Code

Multi-walled Carbon Nanotubes Affect the Morphology and Membrane Potential of Mitochondria in HeLa Cell

  • Lee, Wonwoo (Gyeonggi Science High School for the Gifted) ;
  • Cho, Hyo Min (Department of Anatomy, Korea University College of Medicine, Brain Korea 21) ;
  • Oh, Chung Seok (Gyeonggi Science High School for the Gifted) ;
  • Kim, Eun Hae (Gyeonggi Science High School for the Gifted) ;
  • Sun, Woong (Department of Anatomy, Korea University College of Medicine, Brain Korea 21)
  • Received : 2014.06.13
  • Accepted : 2014.06.29
  • Published : 2014.06.30

Abstract

With wide use of nano-materials, it is increasingly important to address their potential toxicity to mammalian cells. However, toxic effects of these materials have been mainly assessed by the cell survival assays. Considering that mitochondrial morphology and quality are highly sensitive to the condition of the cells, and the impairment of mitochondrial function greatly affect the survival of cells, here we tested the impact of multi-walled carbon nanotubes (MWNT) on the survival, mitochondrial morphology, and their membrane potential in HeLa cells. Interestingly, although MWNT did not induce cell death until 24 hours as assessed by pyknotic cell assay, mitochondrial length was elongated and the mitochondrial membrane potential was significantly reduced by exposure of HeLa cells to MWNT. These results suggest that MWNT exposure is potentially harmful to the cell, and the mechanism how MWNT alters mitochondrial quality should be further explored to assess the safety of MWNT use.

Keywords

References

  1. Aguer C, Gambarotta D, Mailloux R J, Moffat C, Dent R, McPherson R, and Harper M E (2011) Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLOS ONE 6, e28536. https://doi.org/10.1371/journal.pone.0028536
  2. Al Faraj A, Bessaad A, Cieslar K, Lacroix G, Canet-Soulas E, and Cremillieux Y (2010) Long-term follow-up of lung biodistribution and effect of instilled SWCNTs using multiscale imaging techniques. Nanotechnology 21, 175103. https://doi.org/10.1088/0957-4484/21/17/175103
  3. Bachtold A, Hadley P, Nakanishi T, and Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294, 1317-1320. https://doi.org/10.1126/science.1065824
  4. Bates K and Kostarelos K (2013) Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals. Adv. Drug Deliver Rev. 65, 2023-2033. https://doi.org/10.1016/j.addr.2013.10.003
  5. Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, and Rossignol R (2007) Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 120, 838-848. https://doi.org/10.1242/jcs.03381
  6. Bhatnagar I, Venkatesan J, and Kiml S K (2014) Polymer functionalized single walled carbon nanotubes mediated drug delivery of gliotoxin in cancer cells. J. Biomed Nanotechnol. 10, 120-130. https://doi.org/10.1166/jbn.2014.1677
  7. Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, and Mustelin T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett. 160, 121-126. https://doi.org/10.1016/j.toxlet.2005.06.020
  8. Chaturvedi R K and Flint Beal M (2013) Mitochondrial diseases of the brain. Free Radical Biol. Med. 63, 1-29. https://doi.org/10.1016/j.freeradbiomed.2013.03.018
  9. Che Abdullah C A, Lewis Azad C, Ovalle-Robles R, Fang S, Lima M D, Lepro X, Collins S, Baughman R H, Dalton A B, Plant N J, and Sear R P (2014) Primary liver cells cultured on carbon nanotube substrates for liver tissue engineering and drug discovery applications. ACS Appl. Mater. Interfaces [Epub ahead of print].
  10. Chen H and Chan D C (2004) Mitochondrial dynamics in mammals. Curr. Top. Dev. Biol. 59, 119-144. https://doi.org/10.1016/S0070-2153(04)59005-1
  11. Deheer W A C A and Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270, 1179-1180. https://doi.org/10.1126/science.270.5239.1179
  12. Firme C P 3rd and Bandaru P R (2010) Toxicity issues in the application of carbon nanotubes to biological systems. Nanomed-Nanotechnol. 6, 245-256. https://doi.org/10.1016/j.nano.2009.07.003
  13. Galloway C A, Lee H, and Yoon Y (2012) Mitochondrial morphologyemerging role in bioenergetics. Free Radical Biol. Med. 53, 2218-2228. https://doi.org/10.1016/j.freeradbiomed.2012.09.035
  14. Gerlier D and Thomasset N (1986) Use of MTT colorimetric assay to measure cell activation. J. Immunol. Methods 94, 57-63. https://doi.org/10.1016/0022-1759(86)90215-2
  15. Hoppins S (2014) The regulation of mitochondrial dynamics. Curr. Opin. Cell Biol. 29C, 46-52.
  16. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, and Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39, 1378-1383. https://doi.org/10.1021/es048729l
  17. Kane L A and Youle R J (2010) Mitochondrial fission and fusion and their roles in the heart. J. Mol. Med. 88, 971-979. https://doi.org/10.1007/s00109-010-0674-6
  18. Karatas O F, Sezgin E, Aydin O, and Culha M (2009) Interaction of gold nanoparticles with mitochondria. Colloids Surf. B Biointerfaces 71, 315-318. https://doi.org/10.1016/j.colsurfb.2009.02.020
  19. Kim H W, Park S N, Moon Y, Oh S H, and Rhyu I J (2013) Morphological diversity of mitochondria in cultured astrocytes, Hela, COS7 cells under high voltage electron microscopy. Appl. Microsc. 43, 117-121 https://doi.org/10.9729/AM.2013.43.3.117
  20. Knott A B, Perkins G, Schwarzenbacher R, and Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat. Rev. Neurosci. 9, 505-518. https://doi.org/10.1038/nrn2417
  21. Kostarelos K (2008) The long and short of carbon nanotube toxicity. Nat. Biotechnol. 26, 774-776. https://doi.org/10.1038/nbt0708-774
  22. Liesa M and Shirihai O S (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 17, 491-506. https://doi.org/10.1016/j.cmet.2013.03.002
  23. Liu R, Jin P, LiqunYu, Wang Y, Han L, Shi T, and Li X (2014) Impaired mitochondrial dynamics and bioenergetics in diabetic skeletal muscle. PLOS ONE 9, e92810. https://doi.org/10.1371/journal.pone.0092810
  24. Meng L, Zhang X, Lu Q, Fei Z, and Dyson P J (2012) Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33, 1689-1698. https://doi.org/10.1016/j.biomaterials.2011.11.004
  25. Monteiro-Riviere N A, Nemanich R J, Inman A O, Wang Y Y, and Riviere J E (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol. Lett. 155, 377-384. https://doi.org/10.1016/j.toxlet.2004.11.004
  26. Muller J, Huaux F, Moreau N, Misson P, Heilier J F, Delos M, Arras M, Fonseca A, Nagy J B, and Lison D (2005) Respiratory toxicity of multiwall carbon nanotubes. Toxicol. Appl. Pharm. 207, 221-231. https://doi.org/10.1016/j.taap.2005.01.008
  27. Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington S J, and Capaldi R A (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res. 64, 985-993. https://doi.org/10.1158/0008-5472.CAN-03-1101
  28. Youle R J and van der Bliek A M (2012) Mitochondrial fission, fusion, and stress. Science 337, 1062-1065. https://doi.org/10.1126/science.1219855