DOI QR코드

DOI QR Code

Effects of Sodium Chloride Treatment on Seed Germination and Seedling Growth of Italian Ryegrass Cultivars

이탈리안 라이그라스 품종별 NaCl 처리가 발아 및 초기생육에 미치는 영향

  • Lee, Sang-Hoon (National Institute of Animal Science, Rural Development Administration) ;
  • Choi, Gi Jun (National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Dong-Gi (Division of Life Sciences, Korea Basic Science Institute) ;
  • Mun, Jin-Yong (National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Ki-Yong (National Institute of Animal Science, Rural Development Administration) ;
  • Ji, Hee Jung (National Institute of Animal Science, Rural Development Administration) ;
  • Park, Hyung Soo (National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Ki-Won (National Institute of Animal Science, Rural Development Administration)
  • 이상훈 (농촌진흥청 국립축산과학원) ;
  • 최기준 (농촌진흥청 국립축산과학원) ;
  • 이동기 (한국기초과학지원연구원 생명과학연구부) ;
  • 문진용 (농촌진흥청 국립축산과학원) ;
  • 김기용 (농촌진흥청 국립축산과학원) ;
  • 지희정 (농촌진흥청 국립축산과학원) ;
  • 박형수 (농촌진흥청 국립축산과학원) ;
  • 이기원 (농촌진흥청 국립축산과학원)
  • Received : 2014.05.15
  • Accepted : 2014.06.05
  • Published : 2014.06.30

Abstract

This study was conducted to evaluate the performance of Italian ryegrass cultivars for salt tolerance under in vitro condition. Italian ryegrass cultivars such as Greenfarm, Florida80, Kowinearly, and Hwasan101 were tested for their tolerance to various sodium chloride levels (0, 50, 150, 250, and 350 mM). The seed germination, growth, and activities of antioxidant enzymes were investigated under salt treatment. Physiological traits such as seed germination percentage, germination period, shoot and root length, and dry weight were suppressed under entire salt stress conditions. The results indicated that the highest germination percentage and shoot and root length were recorded at normal conditions. Increased sodium chloride levels caused a significant reduction in the seed germination and growth rate. Among the four tested cultivars, Italian ryegrass 'Hwasan101' could be considered as salt tolerant owing to its higher germination percentage, better seedling growth and antioxidant activities under salinity stress, whereas Greenfarm cultivar was more sensitive. The selection of Italian ryegrass cultivars for greater tolerance to saline environment would allow greater productivity from large saline lands.

이탈리안 라이그라스의 발아 및 초기 생육단계에서 내염성 수준 정도를 조사하기 위하여 in vitro 조건에서 다양한 염농도 조건에서 그린팜, 플로리다80, 코원어리 및 화산101호 품종을 이용하여 염해에 대한 반응을 발아율과 산화 스트레스 관련 효소들의 활성을 통해 조사하였다. 저농도의 NaCl 처리구에서는 모든 품종에서 발아율의 차이가 1~3% 정도 감소하는 경향을 보였으며 250 mM 이상의 NaCl 처리구에는 화산101호 품종을 제외한 모든 품종에서 50% 이상의 발아율 감소를 보였다. 또한, NaCl 농도가 높아질수록 발아에 걸리는 시간이 지연되었으며, 350 mM NaCl이 첨가된 처리구에는 화산101호 품종만이 치상 10일후에 발아가 시작하여 12% 정도 발아하였다. NaCl 농도에 따른 shoot과 root의 길이와 생초와 건조 후 무게의 변화도 만생종으로 갈수록 더 생육이 우수한 것으로 타나났다. 품종별간의 잎 조직에서 항산화효소 활성을 분석 결과 고염 조건 (150 mM NaCl)에서 POD 활성은 대조군과 유사한 수준으로 확인 되었다. 반면 APX 활성은 플로리다80과 코윈어리 품종에서는 증가하는 경향을, 화산101 품종에서는 감소하는 경향이 나타났으나 유의적인 수준에서 차이는 확인되지 않았다. 반면 그린팜 품종에서는 유의적인 수준에서 고염 처리에 의한 APX 활성이 감소되는 경향이 나타났다. 지속적으로 in vitro screening을 통해 선발된 계통들은 향후 특성평가와 인공교배를 통해 내염성 이탈리안 라이그라스 개발에 필요한 유용한 육종모재로 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Akbari, G., Sanavy, S.A. and Yousefzadeh, S. 2007. Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pakistan Journal of Biological Sciences. 10(15):2557-2561. https://doi.org/10.3923/pjbs.2007.2557.2561
  2. Akbari, G., Sanavy, S.A. and Yousefzadeh, S. 2007. Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pakistan Journal of Biological Sciences. 10(15):2557-2561. https://doi.org/10.3923/pjbs.2007.2557.2561
  3. Alam, M.Z., Stuchbury, T., Naylor, R.E.L. and Rashid, M.A. 2004. Effect of salinity on growth of some modern rice cultivars. Journal of Agronomy. 3(1):1-10. https://doi.org/10.3923/ja.2004.1.10
  4. Almansouri, M., Kinet, J.M. and Lutts, S. 2001. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil. 231:243-254. https://doi.org/10.1023/A:1010378409663
  5. Azza, M.A.M., Fatma EL-Quensi, E.M. and Farahat, M.M. 2007. Responses of ornamental plants and woody trees to salinity. World Journal of Agricultural Sciences. 3(3):386-395.
  6. Binzel, M.L. and Reuveni, M. 1994. Cellular mechanisms of salt tolerance in plant cells. Horticultural Reviews. 16:33-70.
  7. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 48-254.
  8. Chen, H.J., Chen, J.Y. and Wang, S.J. 2008. Molecular regulation of starch accumulation in rice seedling leaves in response to salt stress. Acta Physiologiae Plantarum. 30(2):35-142.
  9. Feizi, M., Aghakhani, A., Mostafazadeh-Frad, B. and Heidarpour, M. 2007. Salt tolerance of wheat according to soil and drainage water salinity. Pakistan Journal of Biological Sciences. 10(17):2824-2830. https://doi.org/10.3923/pjbs.2007.2824.2830
  10. Fricke, W., Akhiyarova, G., Wei, W., Alexanderssn, E., Miller, A., Kjellbom, P.O., Richardson, A., Wojciechowski, T., Schreiber, L., Veselov, D., Kudoyarova, G. and Volkar, V. 2006. The short term growth responses to salt of the developing barley leaf. Journal Experimental Botany. 57(5):1079-1095. https://doi.org/10.1093/jxb/erj095
  11. Huang, J. and Redmann, R.E. 1995. Salt tolerance of Hordeum and Brassica species during germination and early seedling growth. Canadian Journal of Plant Science. 75:815-817. https://doi.org/10.4141/cjps95-137
  12. Jamil, M., Lee, K.B., Jung, K.Y., Lee, D.B., Han, M.S. and Rha, E.S. 2007. Salt stress inhibits germination and early seedling growth in cabbage (Brassica oleracea capitata L.). Pakistan Journal of Biological Sciences. 10(6):910-914. https://doi.org/10.3923/pjbs.2007.910.914
  13. Lee, K.W., Choi, G.J., Kim, K.Y., Yoon, S.H., Ji, H.C., Park, H.S., Lim, Y.C. and Lee, S.H. 2010. Genotypic variation of Agrobacterium-mediated transformation of Italian ryegrass. Electronic Journal of Biotechnology. 13(3)1-10.
  14. Park, H.S., Kim, J.H., Seo, S., Jung, J.S., Lee, S.H., Lee, K.W. and Choi, G.J. 2013. Effect of Conditioning Methods and Tedding Frequency on the Drying Rate and Quality in Italian Ryegrass Hay. Journal of the Korean Society of Grassland and Forage Science. 19(1)69-74. https://doi.org/10.11109/JAES.2013.19.1.069
  15. Razzaque, M.A., Talukder, N.M., Islam, M.S., Bhadra, A.K., Dutta, R.K. 2009. The effect of salinity on morphological characteristics of seven rice (Oryza sativa) genotypes differing in salt tolerance. Pakistan Journal of Biological Sciences. 12(5):406-412. https://doi.org/10.3923/pjbs.2009.406.412
  16. Sheng, X., Hu, B., He, Z., Ma, F., Feng, J., Shen, W. and Yang, J. 2011. Enhancement of salinity tolerance during rice seed germination by presoaking with hemoglobin. International Journal of Molecular Sciences. 12:2488-2501. https://doi.org/10.3390/ijms12042488
  17. Swapan, T.S. 2003. Salt stress incuded changes on enzyme activities during different developmental stages of rice (Oryza sativa L.). Indian Journal of Biotechnology. 2:251-258.
  18. Theerakulpisut, P., Bunnag S. and Kong-Ngern, K. 2005. Genetic diversity, salinity tolerance and physiological responses to NaCl of six rice (Oryza sativa L.) cultivars. Asian Journal of Plant Sciences. 4(6):562-573. https://doi.org/10.3923/ajps.2005.562.573