DOI QR코드

DOI QR Code

IEEE 802.11k-Measurement Pilot을 활용한 저전력 네트워크 스캐닝 알고리즘

Power Efficient Network Scanning Algorithm Based on IEEE 802.11k-Measurement Pilot

  • 투고 : 2014.02.07
  • 심사 : 2014.05.29
  • 발행 : 2014.06.30

초록

본 논문은 IEEE 802.11 환경에서 새로운 AP를 탐색하기 위한 네트워크 스캐닝의 기존 방식을 802.11k의 Measurement Pilot을 활용하여 개선하는 새로운 알고리즘을 제안한다. 그리고 제안한 알고리즘과 종래의 알고리즘을 시뮬레이션 환경에서 비교하여 분석한다. 일반적인 IEEE 802.11을 사용하는 기기들은 탐색 시간이 짧다는 장점을 갖는 능동 탐색(Active Scan)방식을 활용한다. 하지만 이 방식은 수동 탐색(Passive Scan) 방식에 비해 많은 전력사용을 필요로 한다. 본 논문에서 제안하는 탐색 알고리즘은 IEEE 802.11k에서 활용되는 비컨(Beacon)보다 짧은 주기를 갖는 Measurement Pilot을 활용하여 수동 탐색과 능동 탐색의 장점을 취합하여 전력사용을 줄인다.

This paper suggests the new network scanning algorithm that makes use of measurement pilot of IEEE 802.11k. The purpose of suggesting this algorithm is to improve the existing network scanning schemes. After introducing new algorithm, this paper shows the difference of time property and energy property between former scanning schemes and new scheme with simulation results. Passive scan has a merit of low-power consumption but it takes too long time to fulfill whole scanning. On the contrary, an advantage of active scan is speed but it consumes more battery power than passive scan. By using measurement pilot's smaller interval than beacon interval, the suggested algorithm can consume less power than active scan does, and also make shorter scanning delay than passive scan does.

키워드

참고문헌

  1. S. Sangho, et al.: "Seamless layer-2 handoff using two radios in IEEE 802.11 wireless networks," (2006), Retrieved May, 04, 2014, from http://www.cs.columbia.edu/-ss2020/pape rs/dualcards.pdf
  2. "IEEE std.802.11k-2008 part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. amendment 1: Radio resource measurement of wireless LANs," June 2008.
  3. K. Yunoki, "doc. :IEEE 11-12/0277r2, Hybrid Scanning"(March 2012.), Retrieved May, 04, 2014, from https://mentor.ieee.org/802.11/dcn/12/11-12-0277-02-00ai-hybrid-scanning.pptx
  4. J. Ok, et al., "AuthScan: Enabling fast handoff across already deployed IEEE 802.11 wireless networks," in Proc. IEEE PIMRC, pp. 1-5, Cannes, Sept. 2008.
  5. Prof. Dr.-Ing. A. Wolisz, "Measurement and simulation of the energy consumption of an WLAN Inter-face," (Jun. 2012.), Retrieved May, 04, 2014, from https://www.alexandria.unisg.ch/export/DL/Stephan_Aier/204663.pdf
  6. D. Kang, et al., "An efficient scanning group and order decision method using neighbor network information in wireless lan," J. KICS, vol. 35, no. 2, pp. 142-152, Feb. 2010.
  7. Z. Chang, et al., "Enhanced channel scanning schemes for next generation WLAN system," in Proc. IEEE ICCC, pp. 676-681, Beijing, Aug. 2012.
  8. S. Jeong, et al., "Measurement-based channel hopping scheme against jamming attacks in IEEE 802.11 wireless networks," J. KICS, vol. 37, no. 4, pp. 205-213, Apr. 2012. https://doi.org/10.7840/KICS.2012.37A.4.205
  9. K. Kwon, et al: "A fast handoff algorithm for IEEE 802.11 WLANs using dynamic scanning Time," J. KICS, vol. 29, no. 2A, pp. 128-139, Feb. 2004
  10. Retrieved May, 08, 2014, from https://wigle.net/gps/gps/main/ssidstats?octet=1
  11. I. Hong, "Spatial distribution and utilization feature of WiFi," J. Korea Cartographic Assoc., vol. 10, no. 1, pp. 55-64, Jun. 2010.
  12. S.-H. Kim, et al., "Channel heterogeneity aware channel assignment for IEEE 802.11 multi-radio multi-rate wireless networks," J. KICS, vol. 36, no. 11, pp. 870-877, Nov. 2011. https://doi.org/10.7840/KICS.2011.36A.11.870
  13. X. Lei, et al., "Enhancing IEEE 802.11 power saving mechanism (PSM) with a time slotted scheme," J. KICS, vol. 38, no. 8, pp. 679-686, Aug. 2013. https://doi.org/10.7840/kics.2013.38B.8.679