DOI QR코드

DOI QR Code

Oxidative Stress and Antioxidant Defences in the Tasar Silkworm Antheraea mylitta D: Challenged with Nosema Species

  • Jena, Karmabeer (Silkworm Physiology Laboratory, Central Tasar Research and Training Institute) ;
  • Pandey, Jay Prakash (Silkworm Physiology Laboratory, Central Tasar Research and Training Institute) ;
  • Sinha, Ajit Kumar (Silkworm Physiology Laboratory, Central Tasar Research and Training Institute)
  • Received : 2014.05.02
  • Accepted : 2014.06.20
  • Published : 2014.06.30

Abstract

This study was designed to find out the effect of Nosema spore on oxidative damages and antioxidant defence in the midgut of tasar silkworm Antheraea mylitta. Higher level of lipid peroxidation (LPX) and total hydroperoxides indicate the resultant oxidative stress in the Nosema exposed specimen. Increased superoxide dismutase (SOD) suggests activation of physiological mechanism to scavenge the superoxide radical produced during Nosema infection. Higher activities of catalase and glutathione-S-tranferase on $18^{th}$ d indicate adaptive behaviour of the tissue against oxyradicals. The results suggest that Nosema infection is involved in altering the active oxygen metabolism by modulating LPX and reactive oxygen species (ROS), which is indicative of pebrine disease disorder.

Keywords

References

  1. Aebi H (1974) Catalase; Methods in Enzymatic Analysis. Bergmayer HU (eds.), pp. 673-678. Academic Press, New York.
  2. Bar-Or D, Rael LT, Lau EP, Rao NKR, Thomas GW, Winkler JV, Yukl RL, Kingstone RG, Curtis CG (2001) An analog of the human albumin N-terminus (Asp-Ala-His-Lys) prevents formation of copperinduced reactive oxygen species. Biochem Biophys Res Commun 284, 856-862. https://doi.org/10.1006/bbrc.2001.5042
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utlizing the principle of protein dye binding. Anal Biochem 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Buyukguzel E, Hyrsl P, Buyukguzel K (2010) Eicosanoids mediate hemolymph oxidative and antioxidative response in larvae of Galleria mellonella L. Comp Biochem Physiol 156,176-183. https://doi.org/10.1016/j.cbpa.2010.01.020
  5. Cohn LA, Kinnula VL, Adler KB (1994) Antioxidant properties of guinea pig tracheal epithelialcells in vitro. Am J Physiol 266, L397-404. https://doi.org/10.1152/ajpcell.1994.266.2.C397
  6. Dubovskiy IM, Martemyanov VV, Vorontsova YL, Rantala MJ, Gryzanova EV, Glupov VV (2008) Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp Biochem Physiol 148, 1-5.
  7. Dussaubat C, Brunet JL, Higes M, Colbourne JK, Lopez J, Choi JH, Martin-Hernandez R, Botias C, Cousin M, McDonnell C (2012) Gut Pathology and Responses to the Microsporidium Nosema ceranae in the Honey Bee Apis mellifera. PLoS ONE 7(5), 370-17.
  8. Felton GW, Summers CB (1995) Antioxidant systems in insect. Arch Insect Biochem Physiol 2, 187-189.
  9. Geiszt M, Witta J, Baffi J, Lekstrom K, Leto TL (2003) Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 17,1502-1504. https://doi.org/10.1096/fj.02-1104fje
  10. Ha EM, Oh CT, Bae YS, Lee WJ (2005a) A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847-850. https://doi.org/10.1126/science.1117311
  11. Ha EM, Oh CT, Ryu JH, Bae YS, Kang SW, Jang IH, Brey PT, Lee WJ (2005b) An antioxidant system required for host protection against gut infection in Drosophila. Dev Cell 8,125-132. https://doi.org/10.1016/j.devcel.2004.11.007
  12. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-Transferases, The first enzymatic step in mercapturic acid formation. J Biol Chem 249, 7130-7139.
  13. Halliwell B, Gutteridge JMC (2001) Free Radicals in Biology and Medicine. Oxford University Press, New York.
  14. Higes M, Garcia-Palencia P, Martin-Hernandez R, Meana A (2007) Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). J Invertebr Pathol 94, 211-217. https://doi.org/10.1016/j.jip.2006.11.001
  15. Kinnula VL, Adler KB, Ackley NJ, Crapo JD (1992) Release of reactive oxygen species by guinea pig tracheal epithelial cells in vitro. Am J Physiol 262, L708-712. https://doi.org/10.1152/ajpcell.1992.262.3.C708
  16. Kono Y (1978) Generation of superoxide radical during auto oxidation of hydroxyl amine and an assay for superoxide dismutase. Arch Biochem Biophys 186 189-195. https://doi.org/10.1016/0003-9861(78)90479-4
  17. Krishnan N, Kodrik D, KIudkiewicz B, Sehnal F (2009) Glutathioneascorbic acid redox cycle and thioredoxin reductase activity in the digestive tract of Leptinotarsa decemlineata (Say). Insect Biochem Mol Biol 39, 180-188. https://doi.org/10.1016/j.ibmb.2008.11.001
  18. Krishnan N, Sehnal F (2006) Compartmentalization of Oxidative Stress and Antioxidant Defense in the Larval Gut of Spodoptera littoralis. Arch Insect Biochem Physiol 63, 1-10. https://doi.org/10.1002/arch.20135
  19. Madhusudhan KN, Iresh-Kumar Nungshi-Devi C, Sing GP, Sinha AK, Kirankumar KP, Prasad BC (2012) Impact of pebrine infection on catalase activity in tropical tasar silkworm (Antheraea mylitta D.). Int J Sci Nat 3, 212-213.
  20. Madhusudhan KN, Nungshi-Devi C, Lokesh G, Sing GP, Sinha AK, Kirankumar KP, Prasad BC (2011) Impact of Nosema mylitta (pebrine) infection on the larval parameters, protein concentration and total hemocyte level in Daba ecoraces of Antheraea mylitta D. (tropical tasar silkworm). Microbiol J 1, 97-104. https://doi.org/10.3923/mj.2011.97.104
  21. Medzhitov R, Janeway CA (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295-298. https://doi.org/10.1016/S0092-8674(00)80412-2
  22. Pampanin DM, Camus L, Gomiero A, Marangon I, Volpato E, Nasci C (2005) Susceptibility to oxidative stress of mussels (Mytilus galloprovincialis) in the Venice Lagoon (Italy). Mar Pollut Bull 50, 1548-1557. https://doi.org/10.1016/j.marpolbul.2005.06.023
  23. Rath SS, Prasad BC, Sinha, BR (2003) Food utilization efficiency in fifth instar larvae of Antheraea mylitta (Lepidoptera:Saturniidae) infected with Nosema sp. and its effect on reproductive potential and silk production. J Invertebr Pathol 83, 1-9. https://doi.org/10.1016/S0022-2011(03)00038-7
  24. Renuka G, Shamitha G (2012) Studies on the excretory products of pebrine infected tasar silkworm, Antheraea mylitta Drury (Daba BV). Int J Pharm Bio Sci 3, 1054-1062.
  25. Ryu JH, Ha EM, Lee WJ (2010) Innate immunity and gut-microbe mutualism in Drosophila. Dev Comp Immunol 34, 369-376. https://doi.org/10.1016/j.dci.2009.11.010
  26. Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13, 57-149. https://doi.org/10.1016/S1382-6689(02)00126-6
  27. Velide L, Bhagavanulu MVK, Purushotham Rao A (2013) Study of impact of parasite (Nosema species) on characters of tropical tasar silkworm Anthereae mylitta drury. J Environ Biol 34, 75-78.
  28. WangY, Oberley LW, Murhammer DW (2001) Evidence of oxidative stress following the viral infection of two Lepidopteran cell lines. Free Rad Biol Med 31, 1448-1455. https://doi.org/10.1016/S0891-5849(01)00728-6
  29. Wills ED (1969) Lipid peroxide formation in microsomes: General considerations. Biochem J 113, 315-324. https://doi.org/10.1042/bj1130315
  30. Wolff SP (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydro peroxides. Methods in Enzymol 233, 182-189. https://doi.org/10.1016/S0076-6879(94)33021-2
  31. Zhao LC, Shi LG (2009) Metabolism of hydrogen peroxide between univoltine and polyvoltine strains (Bombyx mori). Comp Biochem Physiol 152, 339-345. https://doi.org/10.1016/j.cbpb.2008.12.014
  32. Zhao LC, Shi LG (2010) Metabolism of hydrogen peroxide between diapuse and non-diapuse eggs of the silkworm, Bombyx mori during chilling at $5^{\circ}C$. Arch Insect Biochem Physiol 74, 127-134.

Cited by

  1. Pro-oxidative challenges and antioxidant protection during larval development of non-mulberry silkworm,Antheraea mylitta(Lepidoptera: Saturniidae) vol.83, pp.1, 2016, https://doi.org/10.1080/11250003.2015.1103319