DOI QR코드

DOI QR Code

Design of Trajectory Following Controller for Parafoil Airdrop System

패러포일 투하 시스템의 궤적 추종 제어기의 설계

  • Yang, Bin (Department of Electronic Engineering, Changwon National University) ;
  • Choi, Sun-Young (Department of Electronic Engineering, Dong-A University) ;
  • Lee, Joung-Tae (Department of Electronic Engineering, Changwon National University) ;
  • Lim, Dong-Keun (Department of Electronic Engineering, Changwon National University) ;
  • Hwang, Chung-Won (Department of Electronic Engineering, Masan University) ;
  • Park, Seung-Yub (Department of Electronic Engineering, Changwon National University)
  • 양빈 (국립 창원대학교 전자공학과) ;
  • 최선영 (동아대학교 전자공학과) ;
  • 이정태 (국립 창원대학교 전자공학과) ;
  • 임동근 (국립 창원대학교 전자공학과) ;
  • 황정원 (마산대학교 전자공학과) ;
  • 박승엽 (국립 창원대학교 전자공학과)
  • Received : 2014.04.13
  • Accepted : 2014.06.18
  • Published : 2014.06.30

Abstract

In this paper, parafoil airdrop system has been designed and analyzed. 6-degrees of freedom (6-DOF) model of the parafoil system is set up. Nonlinear model predictive control (NMPC) and Proportion integration differentiation (PID) methods were separately applied to adjust the flap yaw angle. Compared the results of setting time and overshoot time of yaw angle, it is found that the of yaw angle is more stable by using PID method. Then, trajectory following controller was designed based on the simulation results of trajectory following effects, which was carried out by using MATLAB. The lateral offset error of parafoil trajectory can be eliminated by its lateral deviation control. The later offset deviation reference was obtained by the interpolation of the current planning path. Moreover, using the designed trajectory, the trajectory following system was simulated by adding the wind disturbances. It is found that the simulation result is highly agreed with the designed trajectory, which means that wind disturbances have been eliminated with the change of yaw angle controlled by PID method.

본 논문은 패러포일 투하 시스템을 설계하고 분석하는데 있다. 패러포일 시스템의 6-자유도(6-DOF) 모델을 새우고, 비선형 모델 예측 제어와 PID 제어 방법이 펄럭 편 요각을 제어하기 위해 각각 적용되었다. 펄럭 편 요각의 오버슈트 시간 및 세팅 시간의 결과를 비교하면서 PID제어 방법을 사용하는 것으로부터 펄럭 편 요각이 좀 더 안정화 되는 것을 확인하였다. 그런 다음 MATLAB에 의해 수행된 궤적 추종 효과의 시뮬레이션 결과에 의해 궤적 추종 제어기가 설계되었다. 패러포일 궤적의 측 방향 오차가 그것의 측 방향 편차 제어 방법에 의해 제거 될 수 있었다. 참고로 측 방향 편차는 현재 경로계획의 보간법에 의해 얻어졌다. 그리고 설계된 궤적을 사용하면서, 풍 외란을 추가하는 것으로부터 궤적 추종 시스템이 시뮬레이션 되었다. 시뮬레이션 결과는 풍외란이 PID로 제어되는 펄럭 편 요각 변화에 의해 제거됨으로써 설계된 궤적에 아주 만족하였다.

Keywords

References

  1. S. Tavan, G. Noetscher, A. Dietz, P. Sorensen, C. McCavitt and G. Bailey, "Advanced sensors for precision airdrop," in 20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Seattle: WA, pp. 4-7, May. 2009.
  2. L. R. Wang, Principle and application of the parachute, 1st ed. Beijing, China: Aerospace press, pp. 137-169, 1997.
  3. S. W. Guo, Y. B. Dong and Z. Z. Qin, "Dynamic model and discussion of the parachute and payload system," Spacecraft Recovery & Remote Sensing, Vol. 29, No. 3, pp. 38-44, Sep. 2008.
  4. Y. R. Xie, Q. X. Wu and C. S. Jiang, "Trajectory tracking of parafoil using FDO based nonlinear predictive control," Electronics Optics & Control, Vol.18 No.7, July. 2011.
  5. J. Xu, D. Y. Zhou, "A path planning algorithm based on optimal control", Fire Control & Command Control, Vol. 35, No. 10, Oct. 2010.
  6. N. Slegers and O. Yakimenko, "Optimal control for terminal guidance of autonomous parafoils," in 20th AIAA Aerodynamic Decelerator systems Technology Conference and Seminar, Seattle: WA, pp.4-7, May. 2009.
  7. N. Slegers and M. Costello, "Model predictive control of a parafoil and payload system," Journal of Guidance, Control, and Dynamics, Vol. 28, No.4, pp. 816-821, July-August. 2005. https://doi.org/10.2514/1.12251
  8. S. H. Kim, B. Yang, C. W. Hwang, and S. Y. Park, "Homing Guidance Law of Anti-Ship Missiles Using Flight Path Angle", The Korea Navihation Institute, Vol. 14, No. 5, pp. 596-603, Oct. 2010.
  9. S. H. Kim, C. G. Lee, B. Yang, C. W. Hwang, and S. Y. Park, "Guidance Law of Missiles for control Impact-Time-and Angle by Flight Path Angle in Three Dimensional Space." Journal of Advanced Navigation Technology, Vol. 16, No. 1, pp. 8-15, Oct. 2012. https://doi.org/10.12673/jkoni.2012.16.1.008