DOI QR코드

DOI QR Code

Mg0.1Zn0.9O/ZnO 활성층 구조의 박막트랜지스터 연구

A Study of Thin-Film Transistor with Mg0.1Zn0.9O/ZnO Active Structure

  • 이종훈 (한국해양대학교 나노반도체공학과) ;
  • 김홍승 (한국해양대학교 나노반도체공학과) ;
  • 장낙원 (한국해양대학교 전기전자공학부) ;
  • 윤영 (한국해양대학교 전파공학과)
  • Lee, Jong Hoon (Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University) ;
  • Kim, Hong Seung (Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University) ;
  • Jang, Nak Won (Division of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Yun, Young (Department of Radio Communication Engineering, Korea Maritime and Ocean University)
  • 투고 : 2013.12.30
  • 심사 : 2014.06.23
  • 발행 : 2014.07.01

초록

We report the characteristics of thin-film transistor (TFT) to make the bi-channel structure with stacked $Mg_{0.1}Zn_{0.9}O$ (Mg= 10 at.%) and ZnO. The ZnO and $Mg_{0.1}ZnO_{0.9}O$ thin films were deposited by radio frequency (RF) co-sputter system onto the thermally oxidized silicon substrate. A total thickness of active layer was 50 nm. Firstly, the ZnO thin films were deposited to control the thickness from 5 nm to 30 nm. Sequentially, the $Mg_{0.1}ZnO_{0.9}O$ thin films were deposited to change from 45 nm to 20 nm. The bi-layer TFT shows more improved properties than the single layer TFT. The field effect mobility and subthreshold slope for $Mg_{0.1}ZnO_{0.9}O$/ZnO-TFT are $7.40cm^2V^{-1}s^{-1}$ and 0.24 V/decade at the ZnO thickness of 10 nm, respectively.

키워드

참고문헌

  1. J. Park, J. K. Jeong, Y. Mo, H. D. Kim, and C. Kim, Appl. Phys. Lett., 93, 033513 (2008). https://doi.org/10.1063/1.2963978
  2. J. Raja, K. Jang, H. H. Nguyen, T. T. Trinh, W. Choi, and J. Yi, Curr. Appl. Phys., 13, 246 (2013). https://doi.org/10.1016/j.cap.2012.07.016
  3. T. Kamiya, K. Nomura, and H. Hosono, Sci. Technol. Adv. Mater., 11, 044305 (2010). https://doi.org/10.1088/1468-6996/11/4/044305
  4. C. Ku, Z. Duan, P. I. Reyes, Y. Lu, Y. Xu, C. Hsueh, and E. Garfunkel, Appl. Phys. Lett., 98, 123511 (2011). https://doi.org/10.1063/1.3567533
  5. S. Seo, J. H. Jeon, Y. H. Hwang, and B. Bae, Appl. Phys. Lett., 99, 152102 (2011). https://doi.org/10.1063/1.3646388
  6. K. Remashan, Y. S. Choi, S. J. Park, and J. H. Jang, J. Electrochem. Soc., 157, H1121 (2010). https://doi.org/10.1149/1.3502605
  7. H. Tampo, K. Matsubara, A. Yamada, H. Shibata, P. Fons, M. Yamagata, H. Kanie, and S. Niki, J. Cryst. Growth, 301-302, 358 (2007). https://doi.org/10.1016/j.jcrysgro.2006.11.169
  8. C. Huang, H. Chin, Y. Wu, I. Cheng, J. Z. Chen, K. Chiu, and T. Lin, IEEE Trans. Elec. Dev., 57, 696 (2010). https://doi.org/10.1109/TED.2009.2039527
  9. H. Chin, I. Cheng, C. Li, Y. Wu, J. Z. Chen, W. Lu, and W. Lee, J. Phys. D: Appl. Phys., 44, 455101 (2011). https://doi.org/10.1088/0022-3727/44/45/455101
  10. J. H. Lee, C. H. Kim, H. S. Kim, N. W. Jang, Y. Yun, L. M. Do, and K. H. Baek, J. Korean Phys. Soc., 62, 937 (2013). https://doi.org/10.3938/jkps.62.937
  11. M. Furuta, T. Kawaharamura, D. Wang, T. Toda, and T. Hirao, IEEE Trans. Elec. Dev., 33, 851 (2012). https://doi.org/10.1109/LED.2012.2192902
  12. G. Coli and K. K. Bajaj, Appl. Phys. Lett., 78, 2861 (2001). https://doi.org/10.1063/1.1370116