DOI QR코드

DOI QR Code

Roots of Difference Quotient Forms of Chebyshev Polynomials

  • 투고 : 2014.04.15
  • 심사 : 2014.06.25
  • 발행 : 2014.06.30

초록

Let $T_n(x)$ be the Chebyshev polynomials of first kind of degree n. In this paper, we show that for a > 1, the polynomial with integer coefficients $\frac{T_n(z)-T_n(a)}{z-a}$ has all its roots in $|z|{\leq}a$.

키워드

참고문헌

  1. J. W. S. Cassels, "Factorization of polynomials in several variables", in Proc. 15th Scandinavian Congress Oslo, (1968), Springer Lecture Notes in Mathematics, Vol. 118, pp. 1-17, 1970.
  2. A. J. Engler and S. K. Khanduja, "On irreducible factors of the polynomial f(x)-g(y)", Int. J. Math., Vol. 21, pp. 407-418, 2010. https://doi.org/10.1142/S0129167X10006082
  3. P. Lancaster and M. Tismenetsky, "The theory of matrices with applications", 2nd ed., New York, Academic Press, 1985.
  4. Z. H. Yang and B. F. Cui, "On the Bezoutian matrix for Chebyshev polynomials", Int. J. Math., Vol. 219, pp. 1183-1192, 2012.
  5. J. C. Mason and D. C. Handscomb, "Chebyshev polynomials", Chapman and Hall/CRC, Boca Raton, 2003.
  6. T. J. Rivlin, "Chebyshev polynomials. From approximation theory to algebra and number theory", Pure and Applied Mathematics (New York). John Wiley and Sons, 1990.