DOI QR코드

DOI QR Code

Thermal Degradation Behavior of Liquid Crystalline Thermoset Composites

열경화성 액정 에폭시계 복합재료의 열분해 거동

  • Moon, Hee Jung (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Cho, Seung Hyun (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 문희정 (숭실대학교 공과대학 유기신소재파이버공학과) ;
  • 조승현 (숭실대학교 공과대학 유기신소재파이버공학과)
  • Received : 2014.04.21
  • Accepted : 2014.06.04
  • Published : 2014.06.30

Abstract

Liquid crystalline thermosetting epoxy, 4,4'-diglycidyloxy-${\alpha}$-methylstilbene (DOMS) was synthesized and characterized with cross-polarized optical microscopy (POM) and differential scanning calorimetry (DSC). Carbon nanotube (CNT) or graphene reinforced DOMS composites were fabricated by melt blending with sulfanilamide (SAA) as a curing agent. To investigate the thermal degradation behavior, thermogravimetric analysis (TGA) was performed under nitrogen atmosphere in the temperature range from 30 to $1000^{\circ}C$. Activation energies for decomposition (Ed) were determined by TGA as a function of the conversion by weight loss processes.

Keywords

References

  1. P. G. de Gennes, "The Physics of Liquid Crystals", Oxford University Press, Belfast, Ireland, 1993.
  2. E. Douglas, D. Langlois, and B. Benicewicz, “Synthesis, Phase Behavior, and Curing Studies of Bisacetylene Rigid- Rod Thermosets”, Chem Mater, 1994, 6, 1925−1933. https://doi.org/10.1021/cm00047a007
  3. H. Körner, A. Shiota, T. J. Bunning, and C. K. Ober, “Orientation-On-Demand Thin Films: Curing of Liquid Crystalline Networks in ac Electric Fields”, Science, 1996, 272(5259), 252−255. https://doi.org/10.1126/science.272.5259.252
  4. D. Langlois, C. Brian, B. Benicewicz, and E. Douglas, “Liquid Crystalline Bispropargyl Thermosets”, Chem Mater, 1998, 10, 3393−3399. https://doi.org/10.1021/cm980087b
  5. A. E. Hoyt and B. C. Benicewicz, “Rigid Rod Molecules as Liquid Crystal Thermosets. I. Rigid Rod Amides”, J Polym Sci Part A: Polym Chem, 1990, 28(12), 3403−3415. https://doi.org/10.1002/pola.1990.080281218
  6. E. A. Hoyt and B. C. Benicewicz, “Rigid Rod Molecules as Liquid Crystal Thermosets. II. Rigid Rod Esters”, J Polym Sci Part A: Polym Chem, 1990, 28(12), 3417−3427. https://doi.org/10.1002/pola.1990.080281219
  7. R. A. M. Hikmet, J. Lub, and J. A. Higgins, “Anisotropic Networks Obtained by in situ Cationic Polymerization of Liquid-crystalline Divinyl Ethers”, Polymer, 1993, 34(8), 1736−1740. https://doi.org/10.1016/0032-3861(93)90334-7
  8. G. G. Barclay, C. K. Ober, K. I. Papathomas, and D. W. Wang, "Liquid, Crystalline Epoxy Thermosets Based on Dihydroxymethylstilbene: Synthesis and Characterization", J Polym Sci Part A: Polym Chem, 1992, 30, 1831-1843. https://doi.org/10.1002/pola.1992.080300906
  9. C. Carfagna, E. Amendola, M. Giamberini, A. G. Filippov, and R. S. Bauer, “Curing Kinetics of Liquid-crystalline Epoxy Resins”, Liquid Crystals, 1993, 13(4), 571−584. https://doi.org/10.1080/02678299308026329
  10. E. Amendola, C. Carfagna, M. Giamberini, and G. Pisaniello, "Curing Reactions of a Liquid Crystalline Epoxy Resin Based on the Diglycidyl Ether of 4,4′- dihydroxy-$\alpha$-methylstilbene", Macromol Chem Phys, 1995, 196, 1577−1591. https://doi.org/10.1002/macp.1995.021960516
  11. S. Cho, J. Lee, and E. Douglas, “Synthesis and Thermal Properties of LCT Containing Rigid-rod Epoxy”, High Perform Polym, 2006, 18, 82−99.
  12. S. Byun and S. Cho, "Activation Energies of LCT Containing Rigid-rod Epoxy", Adv Mat Res, 2011, 378− 379, 628−631. https://doi.org/10.4028/www.scientific.net/AMR.378-379.628
  13. C. Carfagna, E. Amendola, and M. Giamberini, “Rigid Rod Networks: Liquid Crystalline Epoxy Resins”, Compos Struct, 1994, 27, 37−43. https://doi.org/10.1016/0263-8223(94)90064-7
  14. D. Chen, X. Gao, and D. Dollimore, “Computer Programs for Kinetic Analysis of Non-isothermal Thermogravimetric Data”, Anal Instrum, 1992, 20, 137−152. https://doi.org/10.1080/10739149208543748
  15. N. Sbirrazzuoli, L. Vincent, A. Mija, and N. Guigo, “Integral, Differential and Advanced Isoconversional Methods Complex Mechanisms and Isothermal Predicted Conversion-time Curves”, Chem Intel Lab Sys, 2009, 96, 219−226. https://doi.org/10.1016/j.chemolab.2009.02.002
  16. J. H. Flynn and L. A. Wall, "A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data", J Polym Sci Part B: Polym Lett, 1966, 4, 323-328. https://doi.org/10.1002/pol.1966.110040504
  17. T. F. Mika, R. S. Bauer, and C. A. May, Eds., "Epoxy Resins, Chemistry and Technology", Dekker, New York, 1988, p. 465.
  18. S. Vyazovkin and N. Sbirrazzuoli, "Isoconversional Kinetic Analysis of Thermally Stimulated Processes in Poymers", Macromol Rapid Comm, 2006, 27, 1515-1532. https://doi.org/10.1002/marc.200600404

Cited by

  1. Thermal Degradation Behavior of Composites with Liquid Crystalline Epoxy and Aluminum Nitride vol.749, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.749.299