DOI QR코드

DOI QR Code

The UV/Ozone Stability of PET and Nylon 6 Nanocomposite Films Containing TiO2 Photocatalysts

TiO2 광촉매를 함유한 PET와 나일론 6 나노복합체막의 자외선/오존에 대한 안정성

  • Jin, Sung-Woo (SOFOS Co. Ltd.) ;
  • Jang, Jinho (Department of Materials Design Engineering, Kumoh National Institute of Technology)
  • Received : 2014.03.19
  • Accepted : 2014.05.23
  • Published : 2014.06.27

Abstract

This study is to assess the photocatalytic degradation of PET and Nylon 6 films containing nano-sized $TiO_2$ powders of anatase and rutile types. The PET and Nylon 6 films containing six kinds of the nanoparticles were prepared by melt casting method using a heating press machine. Reflectance in visible region and water contact angles of the irradiated PET and Nylon 6 composite films decreased with increasing UV/$O_3$ irradiation. Also the enhanced hydrophilicity has a close relationship with the increase in the Lewis base parameter, which indicates more oxidized polymer surfaces. The photocatalytic degradation of the nanocomposite films increased with increasing $TiO_2$ content and UV energy, which is more significant with the anatase types rather than the rutile types. The amide linkages in the Nylon 6 seemed to be more susceptible to the UV light compared to the ester groups in the PET, particularly in the presence of the $TiO_2$ photocatalysts. The photoscission and photodegradation of the polymers in the composites produced more degraded structure assisted by the photocatalytic activity of the $TiO_2$ nanoparticles. Also the composite films can bleach the methylene blue dyes more easily under the UV/$O_3$ irradiation, suggesting the photobleaching activity of the $TiO_2$ nanoparticles.

Keywords

References

  1. M. Anpo and P. V. Kamat, "Environmentally Benign Photocatalysts: Applications of Titanium Oxide-based Materials", Springer, New York, 2010.
  2. M. A. Fox and M. T. Dulay, Heterogenous Photocatalysis, Chem. Rev., 93, 341(1993). https://doi.org/10.1021/cr00017a016
  3. W. A. Zeltner, X. Fu, and M. A. Anderson, The Gas-phase Photocatalytic Mineralization of Benzene on Porous Titania-based Catalysts, Appl. Catal. B, Environ., 6, 209(1995). https://doi.org/10.1016/0926-3373(95)00017-8
  4. M. Mikula, V. Brezova, M. Ceppan, L. Pach, and L. Karpinsky, Comparison of Photocatalytic Activity of Solgel $TiO_2$ and P25 $TiO_2$ Particles Supported on Commercial Fibreglass Fabric, J. Mat. Sci. Lett., 14, 615(1995). https://doi.org/10.1007/BF00586156
  5. K. Sunada, Y. Kikuchi, K. Hashimoto, and A. Fujishima, Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts, Envir. Sci. and Tech., 32(5), 726(1998). https://doi.org/10.1021/es970860o
  6. T. Minabe, P. Sawunyama, Y. Kikuchi, A. Fujishima, and K. Hashimoto, Photooxidation of Long-chain Organic Compounds on $TiO_2$ Thin Film, Electrochemistry, 67, 1132(1999).
  7. O. K. Kwon, J. G. Mon, B. H. Son, and Y. H. Choi, The Functional Properties of Cellulose Fabric Treated with $TiO_2$ -Focusing on Antibacterial Activity, Deodorization and UV Cut Ability-, J. Korean Cloth. Ind., 5, 395(2003).
  8. J. J. Kim and J. D. Jang, Properties of Cotton Fabric Treated with $TiO_2$/PEG, Textile Coloration and Finishing(J. of Korea Soc. Dyers and Finishers), 14, 189(2002).
  9. O. Carp, C. L. Huisman, and A. Reller, Photoinduced Reactivity of Titanium Dioxide, Progress in Solid State Chemistry, 32, 33(2004). https://doi.org/10.1016/j.progsolidstchem.2004.08.001
  10. R. Qiu, D. Zhang, Y. Mob, L. Song, E. Brewer, X. Huang, and Y. Xiong, Photocatalytic Activity of Polymer-modified ZnO under Visible Light Irradiation, J. Hazardous Materials, 156, 80(2008). https://doi.org/10.1016/j.jhazmat.2007.11.114
  11. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, A Metal-free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light, Nature Materials, 8, 76(2009). https://doi.org/10.1038/nmat2317
  12. Y. Guo, S. Chu, S. Yan, Y. Wang, and Z. Zou, Developing a Polymeric Semiconductor Photocatalyst with Visible Light Response, Chem. Commun., 46, 7325(2010). https://doi.org/10.1039/c0cc02355h
  13. K. Maeda, K. Sekizawa, and O. Ishitani, A Polymeric-semiconductor-metal-complex Hybrid Photocatalyst for Visible-light $CO_2$ Reduction, Chem. Commun., 49, 10127(2013). https://doi.org/10.1039/c3cc45532g
  14. J. Zhang, M. Grzelczak, Y. Hou, K. Maeda, K. Domen, X. Fu, M. Antonietti, and X. Wang, Photocatalytic Oxidation of Water by Polymeric Carbon Nitride Nanohybrids made of Sustainable Elements, Chemical Science, 3, 443(2012). https://doi.org/10.1039/c1sc00644d
  15. Y. Yang and J. Luan, Synthesis, Property Characterization and Photocatalytic Activity of the Novel Composite Polymer Polyaniline/$Bi_2SnTiO_7$, Molecules, 17, 2752(2012). https://doi.org/10.3390/molecules17032752
  16. G. H. Koo and J. Jang, Preparation of Melting-free Poly(lactic acid) by Amorphous and Crystal Crosslinking under UV irradiation, J. Appl. Polym. Sci., 127, 4515(2013). https://doi.org/10.1002/app.38056
  17. Y. J. Jang and J. Jang, The Improvement of Thermal Stability and Tensile Toughness by the Photocrosslinking of Poly(phenylene sulfide) containing Acetophenone, Textile Coloration and Finishing(J. of Korea Soc. Dyers and Finishers), 24, 281(2012). https://doi.org/10.5764/TCF.2012.24.4.281
  18. M. S. Kim, Y. J. Jang, and J. Jang, Photooxidation and Dyeability of Poly Ketone by UV/$O_3$ Irradiation, Textile Coloration and Finishing (J. of Korea Soc. Dyers and Finishers), 25, 25(2013). https://doi.org/10.5764/TCF.2013.25.1.25
  19. C. J. V. Oss, R. J. Good, and M. K. Chaudhury, Additive and Non Additive Surfacetension Components and the Interpretation of Contact Angles, Langmuir, 4, 884(1988). https://doi.org/10.1021/la00082a018
  20. J. Kasanen, J. Salstela, M. Suvanto, and T. T. Pakkanen, Photocatalytic Degradation of Methylene Blue in Water Solution by Multilayer $TiO_2$ Coating on HDPE, Applied Surface Science, 258, 1738(2011). https://doi.org/10.1016/j.apsusc.2011.10.028

Cited by

  1. Surface Photooxidation of Poly(butylene terephthalate) Films by UV/Ozone Irradiation vol.28, pp.2, 2016, https://doi.org/10.5764/TCF.2016.28.2.63
  2. Photooxidation of Poly(vinyl butyral) Films by UV/Ozone Irradiation vol.27, pp.2, 2015, https://doi.org/10.5764/TCF.2015.27.2.113
  3. Evolution of Crystal Structure by Post-extension in Nylon 56 Fibers vol.28, pp.1, 2016, https://doi.org/10.5764/TCF.2016.28.1.33
  4. A study on the Functional Properties of Polyester Fiber Treated Titanium Dioxide Photocatalyst vol.49, pp.4, 2014, https://doi.org/10.7473/EC.2014.49.4.336