DOI QR코드

DOI QR Code

A multi-crack effects analysis and crack identification in functionally graded beams using particle swarm optimization algorithm and artificial neural network

  • Abolbashari, Mohammad Hossein (Department of Mechanical Engineering, Lean Production Engineering Research Center, Ferdowsi University of Mashhad) ;
  • Nazari, Foad (Department of Mechanical Engineering, Lean Production Engineering Research Center, Ferdowsi University of Mashhad) ;
  • Rad, Javad Soltani (Mechanical Engineering Department, Amirkabir University of Technology)
  • Received : 2013.02.17
  • Accepted : 2014.05.17
  • Published : 2014.07.25

Abstract

In the first part of this paper, the influences of some of crack parameters on natural frequencies of a cracked cantilever Functionally Graded Beam (FGB) are studied. A cantilever beam is modeled using Finite Element Method (FEM) and its natural frequencies are obtained for different conditions of cracks. Then effect of variation of depth and location of cracks on natural frequencies of FGB with single and multiple cracks are investigated. In the second part, two Multi-Layer Feed Forward (MLFF) Artificial Neural Networks (ANNs) are designed for prediction of FGB's Cracks' location and depth. Particle Swarm Optimization (PSO) and Back-Error Propagation (BEP) algorithms are applied for training ANNs. The accuracy of two training methods' results are investigated.

Keywords

References

  1. Adams, A.D. and Cawley, P. (1979), "The location of defects in structures from measurements of natural frequencies", J. Strain. Anal, 14(2), 49-57. https://doi.org/10.1243/03093247V142049
  2. ANSYS Release 8.0, ANSYS, Inc. Southpointe 275 Technology Drive Canonsburg, PA 15317.
  3. Binici, B. (2005), "Vibration of beams with multiple open cracks subjected to axial force", J. Sound. Vib., 287(1-2), 277-295. https://doi.org/10.1016/j.jsv.2004.11.010
  4. Broek, D. (1986), Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, Dordrecht, Netherlands.
  5. Cam, E., Sadettin, O. and Murat, L. (2008), "An analysis of cracked beam structure using impact echo method", NDT. E. Int., 38(5), 368-373.
  6. Chen, Q., Chan, Y.W. and Worden, K. (2003), "Structural fault diagnosis and isolation using neural networks based on response-only data", Comput. Struct., 81(22-23), 2165-2172. https://doi.org/10.1016/S0045-7949(03)00295-5
  7. Chondros, T.G. and Dimarogonas, A.D. (1980), "Identification of cracks in welded joints of complex structures", J. Sound. Vib., 69(11), 531-538. https://doi.org/10.1016/0022-460X(80)90623-9
  8. Dimarogonas, A.D. (1976), Vibration Engineering, West Publishers, St Paul, Minnesota, USA.
  9. Dimarogonas, A.D. (1996), "Vibration of cracked structures: a state of the art review", Eng. Fract. Mech., 55(5), 831-857. https://doi.org/10.1016/0013-7944(94)00175-8
  10. Douka, E., Loutridis, S. and Trochidis, A. (2003), "Crack identification in beams using wavelet analysis", Int. J. Solid. Struct., 40(13-14), 3557-3569. https://doi.org/10.1016/S0020-7683(03)00147-1
  11. Erdogan, F. and Wu, B.H. (1997), "The surface crack problem for a plate with functionally graded properties", J. Appl. Mech., 64(3), 448-456.
  12. Goudmunson, P. (1982), "Eigenfrequency change of structures: a state of the art review", Eng. Fract. Mech., 55(5), 831-857.
  13. He, Y., Guo, D. and Chu, F. (2001), "Using genetic algorithms and finite element methods to detect shaft crack for rotor-bearing system", Math. Comp. Simul., 57(1-2), 95-108. https://doi.org/10.1016/S0378-4754(01)00295-6
  14. Kao, C.Y. and Hung, S.L. (2003), "Detection of structural damage via free vibration responses generated by approximating artificial neural networks", Comput. Struct., 81(28-29), 2631-2644. https://doi.org/10.1016/S0045-7949(03)00323-7
  15. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of IEEE International Conference on Neural Network, Piscataway, New Jersey, USA, December .
  16. Khiem, N.T. and Lien, T.V. (2001), "A simplified method for natural frequency analysis of a multiple cracked beam", J. Sound. Vib., 245(4), 737-751. https://doi.org/10.1006/jsvi.2001.3585
  17. Kitipornchai, S., Ke, L.L., Yang, J. and Xiang, Y. (2009) "Nonlinear vibration of edge cracked functionally graded Timoshenko beams", J. Sound. Vib., 324(3-5), 962-982. https://doi.org/10.1016/j.jsv.2009.02.023
  18. Lee, J. (2009), "Identification of multiple cracks in a beam using natural frequencies", J. Sound. Vib., 320(3), 482-490. https://doi.org/10.1016/j.jsv.2008.10.033
  19. Lu, Z.R. and Liu, J.K. (2012) "Vibration analysis of a cracked beam with axial force and crack identification", Smart Struct. Syst., 9(4), 355-371. https://doi.org/10.12989/sss.2012.9.4.355
  20. Masoud, A., Jarrad, M.A. and Al-Maamory, M. (1998), "Effect of crack depth on the natural frequency of a prestressed fixed-fixed beam", J. Sound. Vib., 214(2), 201-212. https://doi.org/10.1006/jsvi.1997.1541
  21. MATLAB Release (2009a), The Mathworks, Inc.
  22. Mazanoglu, K. and Yesilyurt, I. (2009), "Sabuncu M. vibration analysis of multiple-cracked non-uniform beams", J. Sound. Vib., 320(4-5), 977-989. https://doi.org/10.1016/j.jsv.2008.09.010
  23. McClelland, J.L. and Rumelhart, D.E. (1986), Parallel distributed processing: Explorations in the Microstructure of Cognition, Vol. I and II, MIT Press, Massachusetts, USA.
  24. Paipetis, S.A. and Dimarogonas, A.D. (1986), Analytical Methods in Rotor Dynamics, Elsevier Applied Science, London, UK.
  25. Patil, D.P. and Maiti, S.K. (2003), "Detection of multiple cracks using frequency measurements", Eng. Fract. Mech., 70(12), 1553-1572. https://doi.org/10.1016/S0013-7944(02)00121-2
  26. Sekhar, A.S. (2008), "Multiple cracks effects and identification", Mech. Syst. Signal. Proc., 22(4), 845-878. https://doi.org/10.1016/j.ymssp.2007.11.008
  27. Shen, M.H.H. and Taylor, J.E. (1991), "An identification problem for vibrating cracked beams", J. Sound. Vib., 150(3), 457-484. https://doi.org/10.1016/0022-460X(91)90898-T
  28. Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Comput. Struct., 92(10), 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008
  29. Wang, B.S. and He, Z.C. (2007) "Crack detection of arch dam using statistical neural network based on the reductions of natural frequencies", J. Sound. Vib., 302(4-5), 1037-1047. https://doi.org/10.1016/j.jsv.2007.01.008
  30. Wu, X., Ghaboussi, J. and Garret, Jr., J.H. (1992), "Use of neural networks in detection of structural damage", Comput. Struct., 42(4), 649-659. https://doi.org/10.1016/0045-7949(92)90132-J
  31. Xiang, J., Zhong, Y., Chen, X. and He, Z. (2008), "Crack detection in a shaft by combination of waveletbased elements and genetic algorithm", Int. J. Solid. Struct., 45(17), 4782-4795. https://doi.org/10.1016/j.ijsolstr.2008.04.014
  32. Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Comput. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006
  33. Yang, J., Chen, Y., Xiang, Y. and Jia, X.L. (2008), "Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load", J. Sound. Vib., 312(1-2), 166-181. https://doi.org/10.1016/j.jsv.2007.10.034
  34. Yu, Z. and Chu, F. (2009), "Identification of crack in functionally graded material beams using the p-version of finite element method", J. Sound. Vib., 325(1-2), 69-84. https://doi.org/10.1016/j.jsv.2009.03.010

Cited by

  1. Multicracks identification in beams based on moving harmonic excitation vol.58, pp.6, 2016, https://doi.org/10.12989/sem.2016.58.6.1087
  2. Dynamic responses of a beam with breathing cracks by precise integration method vol.60, pp.5, 2016, https://doi.org/10.12989/sem.2016.60.5.891
  3. Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials vol.58, pp.2, 2016, https://doi.org/10.12989/sem.2016.58.2.217
  4. Multi-swarm fruit fly optimization algorithm for structural damage identification vol.56, pp.3, 2015, https://doi.org/10.12989/sem.2015.56.3.409
  5. Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm vol.63, pp.4, 2014, https://doi.org/10.12989/sem.2017.63.4.429
  6. Crack identification with combined numerical simulation-intelligent optimization algorithms: a brief summary vol.825, pp.1, 2014, https://doi.org/10.1088/1755-1315/825/1/012029
  7. Crack identification in functionally graded material framed structures using stationary wavelet transform and neural network vol.22, pp.8, 2021, https://doi.org/10.1631/jzus.a2000402