Information Systems Review (경영정보학연구)
- Volume 16 Issue 1
- /
- Pages.37-50
- /
- 2014
- /
- 2982-6551(pISSN)
- /
- 2982-6837(eISSN)
DOI QR Code
A Case-Based Reasoning Method Improving Real-Time Computational Performances: Application to Diagnose for Heart Disease
대용량 데이터를 위한 사례기반 추론기법의 실시간 처리속도 개선방안에 대한 연구: 심장병 예측을 중심으로
- Park, Yoon-Joo (Department of Business Administration, Seoul National University of Science and Technology)
- 박윤주 (서울과학기술대학교 글로벌경영학과)
- Received : 2014.01.06
- Accepted : 2014.04.09
- Published : 2014.04.30
Abstract
Conventional case-based reasoning (CBR) does not perform efficiently for high volume dataset because of case-retrieval time. In order to overcome this problem, some previous researches suggest clustering a case-base into several small groups, and retrieve neighbors within a corresponding group to a target case. However, this approach generally produces less accurate predictive performances than the conventional CBR. This paper suggests a new hybrid case-based reasoning method which dynamically composing a searching pool for each target case. This method is applied to diagnose for the heart disease dataset. The results show that the suggested hybrid method produces statistically the same level of predictive performances with using significantly less computational cost than the CBR method and also outperforms the basic clustering-CBR (C-CBR) method.
사례기반 추론기법(case-based reasoning)은 수많은 데이터 속에서 현재 문제와 유사한 과거데이터를 실시간으로 탐색하고 복원해내야 하기 때문에, 과거에 축적된 데이터의 양이 방대하거나 또는 데이터의 축적 속도가 빠를 경우 계산비용(computational cost)이 급격히 높아지는 확장성(scalability) 문제를 갖는다. 이러한 문제를 해결하기 위하여, 기존의 일부 연구들은 클러스터링(clustering) 기법을 적용하여, 전체 데이타를 사전에 몇 개의 그룹으로 분류한 후, 특정 클러스터 내에서만 과거 사례를 탐색하도록 하는 클러스터링과 사례기반 추론의 하이브리드 기법을 제안하였다. 그러나 이러한 기법은 클러스터 수를 얼마로 설정했는지에 따른 성능편차가 심하고, 또한 기본적인 사례기반 추론기법에 비해 일반적으로 낮은 예측성능을 도출하는 문제점이 있다. 본 연구는 이러한 기존의 클러스터-사례기반추론기법의 문제점을 실증적으로 분석하고, 이를 극복할 수 있는 새로운 하이브리드(hybrid) 사례기반 추론기법을 제안한다. 제안된 기법은 실제 심장병환자를 예측하는 문제에 적용하였으며, 그 결과 제안된 기법이 기존의 사례기반 추론기법에 비해 현격하게 낮은 계산비용을 사용하면서도, 유사한 수준의 예측성능을 도출할 수 있음을 확인하였다.
Keywords