DOI QR코드

DOI QR Code

Antioxidant and Anti-inflammatory Activities of Broccoli Florets in LPS-stimulated RAW 264.7 Cells

  • Hwang, Joon-Ho (Department of Biology, Jeju National University) ;
  • Lim, Sang-Bin (Department of Biotechnology Regional Innovation Center, Jeju National University)
  • Received : 2014.04.23
  • Accepted : 2014.06.12
  • Published : 2014.06.30

Abstract

Broccoli (Brassica oleracea var. italia) florets were extracted with 80% methanol and the extract was sequentially fractionated with n-hexane, ethyl acetate, n-butanol, and distilled water. The extract and the fractions were evaluated for total phenolic content, sulforaphane content, antioxidant activity, and anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The total phenolic content and sulforaphane content of the ethyl acetate fraction (EF) were 35.5 mg gallic acid equivalents/g and $620.2{\mu}g/g$, respectively. These values were higher than those of the 80% methanol extract and organic solvent fractions. The oxygen radical absorbance capacity of the EF [$1,588.7{\mu}M$ Trolox equivalents (TE)/mg] was 11-fold higher than that of the distilled water fraction ($143.7{\mu}M\;TE/mg$). The EF inhibited nitric oxide release from LPS-stimulated RAW 264.7 cells in a dose-dependent manner and inhibited $I{\kappa}B-{\alpha}$ degradation and nuclear factor-${\kappa}B$ activation in LPS-stimulated RAW 264.7 cells. In conclusion, the EF of broccoli florets exerted potent antioxidant and anti-inflammatory effects.

Keywords

References

  1. Moreno DA, Carvajal M, Lopez-Berenguer C, Garcia-Viguera. 2006. Chemical and biological characterisation of nutraceutical compounds of broccoli. J Pharm Biomed Anal 41: 1508-1522. https://doi.org/10.1016/j.jpba.2006.04.003
  2. Stoewsand GS. 1995. Bioactive organosulfur phytochemicals in Brassica oleracea vegetables−a review. Food Chem Toxicol 33: 537-543. https://doi.org/10.1016/0278-6915(95)00017-V
  3. Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH. 1999. Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47: 1541-1548. https://doi.org/10.1021/jf980985s
  4. Mahn A, Reyes A. 2012. An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing. Food Sci Technol Int 18: 503-514. https://doi.org/10.1177/1082013211433073
  5. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  6. Schluger NW, Rom WN. 1998. The host immune response to tuberculosis. Am J Respir Crit Care Med 157: 679-691. https://doi.org/10.1164/ajrccm.157.3.9708002
  7. Guzik TJ, Korbut R, Adamek-Guzik T. 2003. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 54: 469-487.
  8. Li Q, Verma IM. 2002. NF-$\kappa$B regulation in the immune system. Nat Rev Immunol 2: 725-734. https://doi.org/10.1038/nri910
  9. Tsoyi K, Park HB, Kim YM, Chung JI, Shin SC, Lee WS, Seo HG, Lee JH, Chang KC, Kim HJ. 2008. Anthocyanins from black soybean seed coats inhibit UVB-induced inflammatory cylooxygenase-2 gene expression and PGE2 production through regulation of the nuclear factor-$\kappa$B and phosphatidylinositol 3-kinase/Akt pathway. J Agric Food Chem 56: 8969-8974. https://doi.org/10.1021/jf801345c
  10. Shin JS, Noh YS, Lee YS, Cho YW, Baek NI, Choi MS, Jeong TS, Kang E, Chung HG, Lee KT. 2011. Arvelexin from Brassica rapa suppresses NF-$\kappa$B-regulated pro-inflammatory gene expression by inhibiting activation of I$\kappa$B kinase. Br J Pharmacol 164: 145-158. https://doi.org/10.1111/j.1476-5381.2011.01351.x
  11. Raghav SK, Gupta B, Shrivastava A, Das HR. 2007. Inhibition of lipopolysaccharide-inducible nitric oxide synthase and IL-1$\beta$ through suppression of NF-$\kappa$B activation by 3-(1'-1'-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin isolated from Ruta graveolens L. Eur J Pharmacol 560: 69-80. https://doi.org/10.1016/j.ejphar.2007.01.002
  12. Moro C, Palacios I, Lozano M, D'Arrigo M, Guillamon E, Villares A, Martínez JA, García-Lafuente A. 2012. Antiinflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chem 130: 350-355. https://doi.org/10.1016/j.foodchem.2011.07.049
  13. Majumdar S, Aggarwal BB. 2001. Methotrexate suppresses NF-$\kappa$B activation through inhibition of $I{\kappa}B{\alpha}$ phosphorylation and degradation. J Immunol 167: 2911-2920. https://doi.org/10.4049/jimmunol.167.5.2911
  14. Woo KJ, Kwon TK. 2007. Sulforaphane suppresses lipopolysaccharide- induced cyclooxygenase-2 (COX-2) expression through the modulation of multiple targets in COX-2 gene promoter. Int Immunopharmacol 7: 1776-1783. https://doi.org/10.1016/j.intimp.2007.09.018
  15. Piao XL, Kim HY, Yokozawa T, Lee YA, Piao XS, Cho EJ. 2005. Protective effects of broccoli (Brassica oleracea) and its active components against radical-induced oxidative damage. J Nutr Sci Vitaminol (Tokyo) 51: 142-147. https://doi.org/10.3177/jnsv.51.142
  16. Singleton VL, Rossi JA Jr. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16: 144-158.
  17. Ou B, Hampsch-Woodill M, Prior RL. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescence as the fluorescent prove. J Agric Food Chem 49: 4619-4626. https://doi.org/10.1021/jf010586o
  18. Snell JC, Colton CA, Chernyshev ON, Gilbert DL. 1996. Location-dependent artifact for no measurement using multiwell plates. Free Radic Biol Med 20: 361-363. https://doi.org/10.1016/0891-5849(96)02083-7
  19. Nagahama Y, Obama T, Usui M, Kanazawa Y, Iwamoto S, Suzuki K, Miyazaki A, Yamaguchi T, Yamamoto M, Itabe H. 2011. Oxidized low-density lipoprotein-induced periodontal inflammation is associated with the up-regulation of cyclooxygenase- 2 and microsomal prostaglandin synthase 1 in human gingival epithelial cells. Biochem Biophys Res Commun 413: 566-571. https://doi.org/10.1016/j.bbrc.2011.09.002
  20. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. 2004. Polyphenols: food sources and bioavailability. Am J Clin Nutr 79: 727-747. https://doi.org/10.1093/ajcn/79.5.727
  21. Mrkic V, Cocci E, Dalla Rosa M, Sacchetti G. 2006. Effect of drying conditions on bioactive compounds and antioxidant activity of broccoli (Brassica oleracea L.). J Sci Food Agric 86: 1559-1566. https://doi.org/10.1002/jsfa.2554
  22. Kratchanova M, Denev P, Ciz M, Lojek A, Mihailov A. 2010. Evaluation of antioxidant activity of medicinal plants containing polyphenol compounds. Comparison of two extraction systems. Acta Biochim Pol 57: 229-234.
  23. Liang H, Yuan QP, Dong HR, Liu YM. 2006. Determination of sulforaphane in broccoli and cabbage by high-performance liquid chromatography. J Food Compos Anal 19: 473-476. https://doi.org/10.1016/j.jfca.2005.11.005
  24. Guo S, Qiu P, Xu G, Wu X, Dong P, Yang G, Zheng J, McClements DJ, Xiao H. 2012. Synergistic anti-inflammatory effects of nobiletin and sulforaphane in lipopolysaccharide- stimulated RAW 264.7 cells. J Agric Food Chem 60: 2157-2164. https://doi.org/10.1021/jf300129t
  25. Connelly L, Palacios-Callender M, Ameixa C, Moncada S, Hobbs AJ. 2001. Biphasic regulation of NF-$\kappa$B activity underlies the pro- and anti-inflammatory actions of nitric oxide. J Immunol 166: 3873-3881. https://doi.org/10.4049/jimmunol.166.6.3873
  26. Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C. 2001. Nuclear factor kappa B is a molecular target for sulforaphane- mediated anti-inflammatory mechanisms. J Biol Chem 276: 32008-32015. https://doi.org/10.1074/jbc.M104794200
  27. Lee AK, Sung SH, Kim YC, Kim SG. 2003. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-$\alpha$ and COX-2 expression by sauchinone effects on I-${\kappa}B{\alpha}$ phosphorylation, C/EBP and AP-1 activation. Br J Pharmacol 139: 11-20. https://doi.org/10.1038/sj.bjp.0705231
  28. Dinarello CA. 2011. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117: 3720-3732. https://doi.org/10.1182/blood-2010-07-273417
  29. Tak PP, Firestein GS. 2001. NF-${\kappa}B$: a key role in inflammatory diseases. J Clin Invest 107: 7-11. https://doi.org/10.1172/JCI11830
  30. Basak C, Pathak SK, Bhattacharyya A, Mandal D, Pathak S, Kundu M. 2005. NF-${\kappa}B$- and C/EBP$\beta$-driven interleukin-1$\beta$ gene expression and PAK1-mediated caspase-1 activation play essential roles in interleukin-1$\beta$ release from Helicobacter pylori lipopolysaccharide-stimulated macrophages. J Biol Chem 280: 4279-4288. https://doi.org/10.1074/jbc.M412820200
  31. Shibata W, Maeda S, Hikiba Y, Yanai A, Ohmae T, Sakamoto K, Nakagawa H, Ogura K, Omara M. 2007. Cutting edge: the $I{\kappa}B$ kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks inflammatory injury in murine colitis. J Immunol 179: 2681-2685. https://doi.org/10.4049/jimmunol.179.5.2681

Cited by

  1. Treatment with low-concentration acidic electrolysed water combined with mild heat to sanitise fresh organic broccoli (Brassica oleracea) vol.79, 2017, https://doi.org/10.1016/j.lwt.2016.11.012
  2. Murine RAW 264.7 cell line as an immune target: are we missing something? vol.39, pp.2, 2017, https://doi.org/10.1080/08923973.2017.1282511
  3. Olive oil bioactives protect pigs against experimentally-induced chronic inflammation independently of alterations in gut microbiota vol.12, pp.3, 2017, https://doi.org/10.1371/journal.pone.0174239
  4. Formulation Optimization of Antioxidant-Rich Juice Powders Based on Experimental Mixture Design vol.41, pp.3, 2017, https://doi.org/10.1111/jfpp.12897
  5. Hepatotoxic effect of subacute vincristine administration activates necrosis and intrinsic apoptosis in rats: protective roles of broccoli and Indian mustard pp.1744-4160, 2019, https://doi.org/10.1080/13813455.2018.1427765
  6. ) with Adjuvant Arthritis vol.217, pp.1755-1315, 2019, https://doi.org/10.1088/1755-1315/217/1/012046
  7. Protective effects of sulforaphane on diabetic retinopathy: activation of the Nrf2 pathway and inhibition of NLRP3 inflammasome formation vol.68, pp.2, 2014, https://doi.org/10.1538/expanim.18-0146
  8. Complementary therapies for patients with systemic sclerosis vol.4, pp.3, 2014, https://doi.org/10.1177/2397198319833503
  9. Preparation, characterization and therapeutic properties of gum arabic-stabilized gallic acid nanoparticles vol.10, pp.1, 2014, https://doi.org/10.1038/s41598-020-71175-8
  10. Evaluating the Anti-Inflammatory and Antioxidant Effects of Broccoli Treated with High Hydrostatic Pressure in Cell Models vol.10, pp.1, 2021, https://doi.org/10.3390/foods10010167
  11. Current Knowledge and Perspectives of Pyrrolizidine Alkaloids in Pharmacological Applications: A Mini-Review vol.26, pp.7, 2021, https://doi.org/10.3390/molecules26071970
  12. Nutraceutical potential of dietary phytochemicals in edible flowers-A review vol.45, pp.4, 2014, https://doi.org/10.1111/jfbc.13642
  13. Searching for the Antioxidant, Anti-Inflammatory, and Neuroprotective Potential of Natural Food and Nutritional Supplements for Ocular Health in the Mediterranean Population vol.10, pp.6, 2021, https://doi.org/10.3390/foods10061231
  14. Bioactive Compounds in Oxidative Stress-Mediated Diseases: Targeting the NRF2/ARE Signaling Pathway and Epigenetic Regulation vol.10, pp.12, 2014, https://doi.org/10.3390/antiox10121859