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DEGREE OF APPROXIMATION BY PERIODIC

NEURAL NETWORKS

Nahmwoo Hahm† and Bum Il Hong∗

Abstract. We investigate an approximation order of a continuous
2π-periodic function by periodic neural networks. By using the De
La Vallée Poussin sum and the modulus of continuity, we obtain a
degree of approximation by periodic neural networks.

1. Introduction

Approximation by neural networks has been investigated by many
researchers [2, 3, 4, 5, 7, 8] because it has been widely applied in engi-
neering such as robotics, signal processing and etc.

A neural network has three layers: input layer, hidden layer and out-
put layer.

A mathematical expression of a neural network with one hidden layer
is defined by

(1.1)
n∑
i=1

ciσ(aix+ bi),

where σ : R→ R is a univariate activation function.
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Figure 1. Neural network with a single hidden layer

A large class of functions such as the Gaussian function σ(x) = e−x
2
,

the squashing function σ(x) = (1+e−x)−1, the generalized multiquadrics
σ(x) = (1 + x2)α, α /∈ Z and the thin plate splines σ(x) = |x|2q−1, q ∈ N
are used as activation functions.

In papers [4, 5, 7, 8] related to the neural network approximation,
the approximation of non-periodic continuous functions defined on a
compact set by neural networks has been investigated.

The periodic neural network approximation was suggested in [2, 3]. In
fact, Guanzhen [2] suggested a periodic neural network approximation
based on scattered nodes. On the other hand, Hahm and Hong [3]
proved the approximation capability of continuous 2π-periodic functions
by periodic neural networks.

In this paper, by using the De La Vallée Poussin sum and the modulus
of continuity, we compute an actual periodic neural network approxima-
tion order of a continuous 2π-periodic function.

2. Preliminaries

We use the same notations in [1, 6]. Note that the class of all trigono-
metric polynomials of order at most n is denoted by Tn. An element in
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Tn has a complex expression of the form

(2.1)
∑
|j|≤n

lje
ijx,

where lj ∈ C. For a continuous 2π-periodic function f , the norm of f is
given by

‖f‖∞ = sup{|f(x)| : x ∈ [−π, π]}.
For n ∈ N, we define

(2.2) E∗n(f) = inf
T∈Tn

‖f − T‖∞.

The quantity E∗n(f) measures the best approximation of a continuous
2π-periodic function f by trigonometric polynomials in Tn. We write,
for k ∈ Z and n ∈ N,

(2.3) ck(f) =
1

2π

∫ π

−π
f(t)e−iktdt

and

(2.4) Sn(f, x) =
∑
|k|≤n

ck(f)eikx,

where ck(f) and Sn(f) denote the Fourier coefficient of f and the nth
partial sum of Fourier series of f , respectively. It is clear that

(2.5) Sn(h) = h

for a trigonometric polynomial h of degree m with m ≤ n. Moreover for
n ∈ N, the Fejér sum Fn(f) of f is defined by

(2.6) Fn(f, x) =
1

n

n∑
k=1

Sk(f, x)

and the De La Vallée Poussin sum Vn(f) of f is given by

(2.7) Vn(f, x) =
1

n

2n∑
k=n+1

Sk(f, x).

It is well known that Fn(f) ∈ Tn, ‖Fn(f)‖∞ ≤ ‖f‖∞ and Vn(f) ∈ T2n.
From now on, the letters c, c1 and c2 in this paper denote positive

constants which are independent of f and their values may be different
at different occurrences.
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3. Main results

In order to obtain an approximation order by periodic neural net-
works, we introduce Jackson’s theorem for periodic functions. Natanson
especially stated Jackson’s theorem for continuous 2π-periodic functions
in [6]. His result is the following Theorem.

Theorem 3.1. For a continuous 2π-periodic function f and n ∈ N,
there exists T ∈ Tn such that

(3.1) ‖f − T‖∞ ≤ c1ω(f,
1

n
),

where ω is the modulus of continuity and c1 is an absolute positive
constant.

Therefore, Theorem 3.1 implies that

(3.2) E∗n(f) ≤ c1ω(f,
1

n
)

for a continuous 2π-periodic function f on [−π, π] and ω(f, 1
n
) → 0 as

n→∞ by the definition of the modulus of continuity.
Note that the De La Vallée Poussin sum Vn(f) of 2π-periodic function

f has the following properties.

Lemma 3.2. For n ∈ N, we have
(1) Vn(h) = h for any trigonometric polynomial h ∈ Tm with m ≤ n.
(2) ‖Vn(f)‖∞ ≤ 3‖f‖∞ for a continuous 2π-periodic function f .

Proof. (1) By (2.5), we have Sk(h) = h for n+1 ≤ k ≤ 2n and h ∈ Tm
with m ≤ n. Hence

Vn(h) =
1

n

2n∑
k=n+1

Sk(h) =
1

n

2n∑
k=n+1

h = h.

(2) Since Vn(f) = 2F2n(f)− Fn(f) for n ∈ N, we have

‖Vn(f)‖∞ ≤ 2‖F2n(f)‖∞ + ‖Fn(f)‖∞ ≤ 3‖f‖∞.

Thus we complete the proof.

We obtain the following result from Theorem 3.1 and Lemma 3.2.
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Theorem 3.3. Let n ∈ N and let f be a continuous 2π-periodic
function. Then

(3.3) ‖f − Vn(f)‖∞ ≤ c2ω(f,
1

n
),

where Vn(f) is the De La Vallée Poussin sum of f and c2 is an absolute
constant.

Proof. By Theorem 3.1, there exists a trigonometric polynomial T ∗ ∈
Tn such that

(3.4) ‖f − T ∗‖∞ ≤ c1ω(f,
1

n
),

where ω is the modulus of continuity and c1 is an absolute positive
constant. By Lemma 3.2, we have Vn(T ∗) = T ∗ and ‖Vn(T ∗ − f)‖∞ ≤
3‖f − T ∗‖∞. Hence

‖f − Vn(f)‖∞ = ‖f − T ∗ + T ∗ − Vn(f)‖∞(3.5)

≤ ‖f − T ∗‖∞ + ‖T ∗ − Vn(f)‖∞
= ‖f − T ∗‖∞ + ‖Vn(T ∗ − f)‖∞
= ‖f − T ∗‖∞ + 3‖T ∗ − f‖∞
= 4‖f − T ∗‖∞

≤ 4c1ω(f,
1

n
)

:= c2ω(f,
1

n
),

where c2 is an absolute constant.

Since Vn(f) ∈ T2n for n ∈ N, we rewrite

(3.6) Vn(f, x) =
∑
|j|≤2n

lj(f)eijx,

where lj(f) ∈ C.
Now we have to show eijx in (3.6) is approximated arbitrarily well

by periodic neural networks. Using a Riemann sum, we obtained the
following lemma in [3].
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Lemma 3.4. Let σ be a continuous 2π-periodic function with Γ :=
1
2π

∫ π
−π σ(t)e−itdt 6= 0. Then, for a given j ∈ Z,

(3.7) ‖eij· − 1

mΓ

m∑
k=1

ei
π(2k−m)

m σ(j · −π(2k −m)

m
)‖∞ → 0

as m→∞.

Lemma 3.4 gives us the following.

Theorem 3.5. Let lj ∈ C for j ∈ Z and let σ be a continuous 2π-
periodic function with Γ := 1

2π

∫ π
−π σ(t)e−itdt 6= 0. Then for a given ε > 0,

there exists a periodic neural network

(3.8) N2n,m(σ, x) :=
∑
|j|≤2n

m∑
k=1

lj
1

mΓ
ei
π(2k−m)

m σ(jx− π(2k −m)

m
)

such that

‖
∑
|j|≤2n

lje
ij· −N2n,m(σ, ·)‖∞ < ε.

Proof. Let ε > 0 be given. Then by Lemma 3.4, there exists mj ∈ N
such that

(3.9) ‖eij· − 1

mjΓ

mj∑
k=1

e
i
π(2k−mj)

mj σ(j · −π(2k −mj)

mj

)‖∞ <
ε

2j2+2(|lj|+ 1)

for each j ∈ Z with |j| ≤ 2n.
Let m = max{mj : |j| ≤ 2n}. Then

‖
∑
|j|≤2n

lje
ij· −N2n,m(σ, ·)‖∞(3.10)

= ‖
∑
|j|≤2n

lje
ij· −

∑
|j|≤2n

m∑
k=1

lj
1

mΓ
ei
π(2k−m)

m σ(j · −π(2k −m)

m
)‖∞

≤
∑
|j|≤2n

|lj| · ‖eij· −
m∑
k=1

1

mΓ
ei
π(2k−m)

m σ(j · −π(2k −m)

m
)‖∞

< ε.

Thus we complete the proof.
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From Theorem 3.3 and Theorem 3.5, we obtain the following theorem
that is the main result of this paper.

Theorem 3.6. Let n ∈ N and let σ be a continuous 2π-periodic
function with with Γ := 1

2π

∫ π
−π σ(t)e−itdt 6= 0. Then for a continuous

2π-periodic function f , there exists a neural network

(3.11) N2n,m(σ, x) :=
∑
|j|≤2n

m∑
k=1

lj(f)
1

mΓ
ei
π(2k−m)

m σ(jx− π(2k −m)

m
)

such that

‖f −N2n,m‖∞ < cω(f,
1

n
),

where lj(f)’s are coefficients of the De La Vallée Poussin sum of f , ω is
the modulus continuity and c is an absolute constant.

Proof. Let ε > 0 be given. Then by Theorem 3.3, there exists Vn(f) ∈
T2n such that

(3.12) ‖f − Vn(f)‖∞ ≤ cω(f,
1

n
),

where c is an absolute constant. Since Vn(f, x) =
∑
|j|≤2n lj(f)eijx for

lj(f) ∈ C, Theorem 3.4 gives that there exists a neural network

(3.13) N2n,m(σ, x) :=
∑
|j|≤2n

m∑
k=1

lj(f)
1

mΓ
ei
π(2k−m)

m σ(jx− π(2k −m)

m
)

such that

(3.14) ‖Vn(f, ·)−N2n,m(σ, ·)‖∞ < ε.

Therefore, from the equations (3.12) and (3.14), we have

‖f −N2n,m‖∞ ≤ ‖f − Vn(f)‖∞ + ‖Vn(f)−N2n,m‖∞(3.15)

< cω(f,
1

n
) + ε.

Since ε > 0 is arbitrary, we get

(3.16) ‖f −N2n,m‖∞ ≤ cω(f,
1

n
).

This completes the proof.
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4. Discussions

In [3], we showed a possibility of periodic function approximation
by periodic neural networks. One of main topics in the neural network
approximation is the complexity problem which shows approximation
orders, since density results are easily obtained from complexity results.

In this paper, we obtained a complexity result by periodic neural
networks using the De La Vallée Poussin sums, since the De La Vallée
Poussin sums have the properties of the nth partial sums of Fourier series
and the Fejér sums. Since Vn(f) ∈ T2n for a continuous 2π-periodic
function f , Theorem 3.3 shows that

(4.1) E∗2n(f) ≤ c1ω(f,
1

n
),

where c1 is an absolute constant. Thus we used a periodic neural network
with 2n neurons instead of n neurons in the hidden layer in order to
obtain the main result. So, the following question arises. Even if we
use a periodic neural network with n neurons in the hidden layer, is the
inequality

(4.2) ‖f −Nn,m‖∞ ≤ cω(f,
1

n
),

where c is an absolute constant still true? We think that it is much more
complicated and will study this in the future.
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