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THE PROPERTIES OF JOIN AND MEET PRESERVING
MAPS

YoNG CHAN KiM AND JunG M1 Ko*

ABSTRACT. We investigate the properties of join and meet preserv-
ing maps in complete residuated lattices. In particular, we give their
examples.

1. Introduction

Pawlak [8,9] introduced the rough set theory as a formal tool to deal
with imprecision and uncertainty in the data analysis. Hajek [4] intro-
duced a complete residuated lattice which is an algebraic structure for
many valued logic. By using the concepts of lower and upper approxima-
tion operators, information systems and decision rules are investigated in
complete residuated lattices [1-3, 10,11,14]. Beélohlavek [1,2] developed
the notion of fuzzy contexts using Galois connections with R € LX*Y
on a complete residuated lattice. Zhang [12,13] introduced the fuzzy
complete lattice which is defined by join and meet on fuzzy posets. It
is an important mathematical tool for algebraic structure of fuzzy con-
texts [1-3,5-8]. Kim [5] show that join (resp. meet, meet join, join meet)
preserving maps and upper (resp. lower, meet join, join meet) approxi-
mation maps are equivalent in complete residuated lattices.
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In this paper, we investigate the properties of join and meet preserv-
ing maps in complete residuated lattice. In particular, we give their
examples.

2. Preliminaries

DEFINITION 2.1. ([7]) A structure (L,V,A,®,—, L, T) is called a
complete residuated lattice iff it satisfies the following properties:

(L1) (L,V,A, L, T) is a complete lattice where L is the bottom ele-
ment and T is the top element;

(L2) (L,®, T) is a monoid;

(L3) adjointness properties,i.e.

r<y—ziff xOy <z

A map *: L — L defined by a* = a — L is called strong negations if

a** = a.

)T, ity ==z, ooy L ify=ux,
Taly) = { 1, otherwise. Taly) = { T, otherwise.
In this paper, we assume that (L, V, A\, ®, —,*, L, T) be a complete resid-
uated lattice with a strong negation *.

DEFINITION 2.2. ([12,13]) Let X be aset. A functioney : X xX — L
is called:

(E1) reflexive if ex(z,z) =1 for all z € X,

(E2) transitive if ex(x,y) ® ex(y, 2) < ex(z, 2), for all z,y,z € X

(E3) if ex(z,y) =ex(y,z) =1, then x = y.

If e satisfies (E1) and (E2), (X, ex) is a fuzzy preorder set. If e satisfies
(E1), (E2) and (E3), (X, ex) is a fuzzy partially order set (simply, fuzzy
poset).

EXAMPLE 2.3. (1) We define a function e, : L x L — L as ep(x,y) =
x —y. Then (L, ey) is a fuzzy poset.

(2) We define a function e;x : L* x LY — L as e;x(A,B) =
Nsex(A(z) = B(z)). Then (L*,erx) is a fuzzy poset from Lemma
2.10 (9).

DEFINITION 2.4. ([12,13]) Let (X, ex) be a fuzzy poset and A € LX.
(1) A point z is called a join of A, denoted by xy = UA, if it satisfies
(J1) A(x) < ex(x,xo),
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(92) Aex (A(@) = ex(@,)) < ex(wo,1).

A point x; is called a meet of A, denoted by z; = MA, if it satisfies
(M1) A(x) < ex(z1,z),

(M2) Ayex(Alz) = ex(y, ) < ex(y, z1).

DEFINITION 2.5. ([12,13]) Let (LX, e;x) and (LY, ev) be fuzzy posets.

(1) H : L* — LY is a join preserving map if H(LU®) = UH 7 (P) for
all ® € LY, where H™(®)(B) = /3y 4)—p (A).

(2) J : L — LY is a meet preserving map if J(M®) = 17~ (®) for
all ® € LV

THEOREM 2.6. ([5]) Let X and Y be two sets. Let (L*, e;x) and
(LY ,epy) be fuzzy posets. Then the following statements are equivalent:

(1) H : L* — LY is a join preserving map iff H(a ® A) = a ® H(A)
and H(\;c; Ai) = Ve H(A;) for all A, A; € LY, and a € L.

(2) J : L* — LY is a meet preserving map iff J(a — A) = a —
)

J(A) and T (Nic; Ai) = Nier T (A;) for all A, A; € LX, and o € L.

LEmMMA 2.7. ([1,2,4]) Let (L,V,A,®,—,*, L, T) be a complete resid-
uated lattice with a strong negation *. For each x,y,z,x;,y; € L, the
following properties hold.

(1) ® is isotone in both arguments.

(2) — is antitone in the first and isotone in the second argument.

B)x—y=Tiffx <y.

A z—->T=Tand T -z ==z
(5)
(6) =

5 (\/iel“ ?/Z) = \/iel‘(x © yl) and (\/ieF xl) Oy = Vier(xi © y)
) 6 (/\ieF yi) = /\ier(x — yi) and (Vier xz) — Y= /\ier(wi —

Y).

(7) vier Ti = \/,-er Yi) > /\ieF("Ei — i)

8)(r—y Ox<yand (y = 2) O ((r—y) <(xr—2).

DNzr—=y<(y—2z2) —(r—2).

(10) /\iEF x; = (\/iGF ;)" and \/iGF Ty = (/\ier ;)"

(1) (zoy) —mz=2—=>(y—2)=y—=>(r—2)and (zOy) =z —
Y.

(12) 2* » y*=y—zand (r - y) =2 O y*"
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3. The properties of join and meet preserving maps

THEOREM 3.1. Let (L*,e;x) be a fuzzy poset. Let H,H™': L* —
LX be join preserving maps such that H™'(T,)(y) = H(T,)(z) for all
v,y € X. Let 7,7 ' : LX — LX be meet preserving maps such that
TNy = T (T (@) and H(T,)(y) = T(T;)(y) for all 2,y € X.
For each x,y € X, € L, A, B € LX, we have the following properties.

(1) H(A)(y) = V,(Alx) © H(T.)(y) and HH(A)(y) = V, (Alz) ©
HH(Ta)(y) = V. (Alz) © H(T,)().

(2) T(A)(y) = N\, (A" (z) = T( ?flcz(y)) = /\z(j*(Ti)gg) — A(z))

nd 7HAG) = A (@) — THTDW) = AT (T —
(3).j(T) =J Y T)=Tand H(L)=H(L)=L
(4) T(A) = (H(A"))" and H(A) = (T (A"))"
(5) H(a = A) > a— H(A) and T(a® A) > a® J(A)
(6) T(Te = a)(y) = H(T2)(y) = a=H" (T, ©a")(y).
(7) Nacr((A(y) = a) = a) = A(y).
(8) T(A) = Nper(H(A = @) = «)
(9) T(A = a) = H(A) = a.
(10) H(A = a) < J(A) — a.
(11) exx(H(A), B) = e x(A, T 1(B)) and epx (H™'(A), B)

(12) epx (A, B) < epx (H(A), H(B)).
(13) epx (A, B) < epx (T(A), T(B)).

Proof. (1) For A =\/,.¢(A(z) ® T,), we have
H(A)(y) (Vyex(A@) © ))( ) = Viyex (Al) OH(TL) (1))

= H
H N A(y) =H  (Veex(A@) © To)) () = Vpex (Alz) ©HH(T2)(y)
= V,ex(A(z) © H(Ty) ()

(3) J(T)ly

similarly proved.
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(10) Since (a > b) ©c®(c—=a) <(a—=b) @a<b (a =>b) Oc<
(¢ — a) — b. Thus

THEOREM 3.2. Let (L%, ey x) be a fuzzy poset. Let H,H™ ' : L* —
LX be join preserving maps such that H=(T,)(y) = H(T,)(z) for all
v,y € X. Let 7,771 : L — L* be meet preserving maps such that
T HTy) = J(Ty)(x) for all z,y € X. For all x,y,z € X and
A € LX, we have the following properties.

(1) If T, <H(T,) forallx € X, then A < H(A) and A < H™(A).

(2) IFJ(T:) < T: forallz € X, then J(A) < A and J'(A) < A.

(3) Vyex H(T2)(y) © H(T,)(2) < H(T,)(2) for all z,z € X iff
H(H(T,)) < H(TL) il HH(HH(TL)) S H Y(TL) i H(H(A)) < H(A)
iff HY(HH(A)) < HY(A).

(4) Voex H(T2)(y) © H(To)(2) < H(Ty)(2) for all x,z € X iff
HHT(T2)) < H(T.) if H(HTH(TL)) < HTH(T.) iff H(HTH(A)) <
H(A) if H(HT(A)) < HTY(A).
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(5) Vioex H(Ty)(z) © H(T)(z) < H(Ty)(2) for all »,z € X iff
H(Ta)) < HHTL) iff HOHH(T,)) < H(T.) iff HTH(H(A)) <

i ) < H(A).

)66 JT) < 7

ili
e

T)(2) for all y,z € X iff
(T3) iff T(A) < T (T (A))
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1) For A=\, .x(A(x) ®T,), we have
HAY) =\ (A) 0 H(T) (W) =V (A@) © Taly)) = Aly).
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Similarly, we have H~(A) > A for each A € L*.
(2) For A = A\, cx(A*(x) — T%), we have

TN ) = N\ A (2) = T(TH) < \ (A @) = Tily) = Aly).
Similarly, we have J ~1(A) < A for each A € L*.

(3) Since V oy H(T2)(y) OH(Ty)(2) = H(V yex H(T2)(y)OTy)(2) =
H(H(T,)(z) for all 2,z € X and
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HHHHT))(2) = HH (Vyex HH(T )(y)GTy)() Vyex(HTH(T2)()o
HH(TY)(2)) = Vyex (H(T)(@)OH(T2)(y) < H T (To)(2) = H(T.)(x),
we have \/, .y H (T YY) © H(Ty)(2) < H(T,)(2) for all z,z € X iff
H(H(T ))S H(To) #E HTH(HTH(TL) < HTH(T.).
Second, let H(H(T,)) < H(T,) for all z € X.
HH(A)(2) = H(V,yex(H(A) () © Ty)(2) = Vex (H(A)(y) © H(Ty)(2)
= Vyex (Vaex (Alx) © H(TL)(y) © H(Ty)(2)
S\/xeX( () ©H(T2)(y)) = H(A)(x).

Other cases are similarly proved.

(4) Since V ex H(T2) (1) OH(T2)(2) = H(V ex H(T2)(y)OT2)(2) =
HV,ex HHTY)(2)0T,)(2) = H(H(T,)(2) for all 2, z € X, we have
Viex H(T2)(W)OH(T2)(2) < H(Ty)(2) forallz, z € X it H(H(T,)) <
H(Ty).

Second, let H(H(

_|

2) <H(T,) for all x € X.

(Vyex(HH(A)(y) © T,)(2)
yex(HH(A) (W) © ( v)(2)

Vaex (A(x) O H™H(To)(y) © H(T,)(2)
A(‘T)@(\/yeX( (Ty)(x) © H(Ty)))(2))
A(z) © H(T2)(2)) = H(A)(2).

Other cases and (5) are similarly proved.
(6) For T (T3) = Ayex (T (T2)(y) = T3), we have
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Second, let J(J(T%)) > J(T%) for all x € X.

/\yeX(jil*(T;)(y) — T;), we have

(7) For 771(T7)
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(10) Since H(T.)(y) OH(T2)(2) < H(Ty)(2) M H(T2)(y) < H(T2)(2) =

H(T,)(z) =T (T3 (x) = H(T,)(2), we have

Other cases are similarly proved.

Thus, H™(T (A))(x) < T~ (A)(x).

Thus, H™ YT 1(A))(z) < T *(A)(x). Other cases are similarly proved.
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(11) Since H(T ) (y) OH(T)(y) < H(T2)(2) MEH(TL)(y) < H(T2)(y) —
H(T2)(2) =T (T2)(y) (2), we have

iff H(T,)(y
it H(A)(y) < T (T)(y) = H(A)(z)
iff H(A)(y) < T(H(A))(z).
H(T2)(y) © H(T2)(y) © A(z) < H(T.)(2) © A=)
iff H(T.)(y) ©A(z) S H(T)(y) = H(T2)(2) © A(2)
ifft H(A)(y) < TH(A)(y)-
H(T2)(y) ©H(T)(y) © (H(T2)(2) = A(z))
SH(T2)(2) © (H(T2)(2) = A(z)) < A(z)
it H(T.)(y) © (H(T2)(2) = A(x)) < H(T2)(y) — A(z)

H(T2)(y) OH(T2)(y) © (H(T2)(2) = A(2))
< H<Tac))(z) O (H(T2)(2) = A(2)) < A(2)

]

EXAMPLE 3.3. Let (L = [0,1],®,—,") be a complete residuated lat-
tice with the law of double negation defined by

rOy=(x+y—1)V0, z=2y=1—-a+y)Al 2*=1-—u.
Let X = {x,y,2} and A, B € LX as follows:
A(x) =0.9,A(y) = 0.8, A(z) = 0.3, B(x)=0.3,A(y) =0.7, A(z) = 0.8.
Define H(1,)(y) = T*(1%)(y) as follows

H(L)(@) =1 H(L)(y) =08 H(L)(z) = 0.6
HL)(0) = 0.7 HL)p) =1 H(L,)E) =03
H(1L)(x) = 0.5 H(L)(y) = 0.6 H(1)(y) = 1.
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(1) Vyex(H(1:)(y) © H(1y)(2) = H(1.)(2) and 1, < H(1,) for all
z,y € X. Since H(A)(y) = V,ex(Alz) © (H(L)(y)) and T(A)(y) =

vex (T (1) (y) = A(x)), we have
H(H(A)) = H(A) =(0.9,0.8,0.5), H(H(B)) = H(B) = (0.4,0.7,0.8),
H(H(A")) = H(A") =(0.2,0.3,0.7), H(H(B")) = H(B*) = (0.7,0.5,0.3),
T(T(A) = T(A) = (0.8,0.7,0.3), T(T(B)) = J(B) = (0.3,0.5,0.7),
T(T(AY) = T(A*) = (0.1,0.2,0.5), T(J(B*)) = J(B*) = (0.6,0.3,0.2).
H(A) = (T(A)", T (A) = (H(A))", H(B) = (J(B))", T (B) = (H(B"))".

(2) i (x) as follows

H (L) (x) =1 H7(L)(y) = 0.7 H7'(1;)(z) =05

H (1) (x) = 0.8 HU(L,)(y) =1 H'(1,)(2) =0.6

HH (L) () =06 H7'(L)(y) = 0.3 H'(L)(y) =L
We have V¢ (B! (1) (y) OH ' (1)(2) = H™'(1s)(2) and 1, < H (1)
for all z,y € X. Since H™'(A)(y) = V,ex(A(@) © (K (14)(y)), we have

(
H Y H T (A) =HHA) =(0.9,0.8,0.4), H *(B) = (0.5,0.7,0.8),
JHA) =(0.7,0.8,0.3), T HB) = (0.3,0.5,0.8).
(3) Since 0.6 =V, (H(1a)(y) ©H
(0.8,1,0.6) =H '(1,) £ T~

(0.5,0.6,1) = H(1,) £ J(H(1.)) = (0.6,0.3,1).
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