Abstract
To supplement the ISO-GUM method for the evaluation of measurement uncertainty, a simulation program using the Monte Carlo method (MCM) was developed, and the MCM and GUM methods were compared. The results are as follows: (1) Even under a non-normal probability distribution of the measurand, MCM provides an accurate coverage interval; (2) Even if a probability distribution that emerged from combining a few non-normal distributions looks as normal, there are cases in which the actual distribution is not normal and the non-normality can be determined by the probability distribution of the combined variance; and (3) If type-A standard uncertainties are involved in the evaluation of measurement uncertainty, GUM generally offers an under-valued coverage interval. However, this problem can be solved by the Bayesian evaluation of type-A standard uncertainty. In this case, the effective degree of freedom for the combined variance is not required in the evaluation of expanded uncertainty, and the appropriate coverage factor for 95% level of confidence was determined to be 1.96.
본 연구에서는 ISO GUM(불확도 표현 지침서)의 불확도 평가 방법을 보완하기 위해, 몬테카를로 방법(Monte Carlo Method, MCM)을 적용한 불확도 해석 프로그램을 개발하고, MCM과 GUM의 평가 결과를 비교하였다. 그 결과 다음과 같은 결과를 도출하였다. 첫째, 측정량의 확률 분포가 정규 분포가 아닌 때에도 MCM 방법은 정확한 포함 구간을 제공한다. 둘째, 정규 분포가 아닌 다른 분포들 몇몇 개가 합성되는 경우 그 확률 분포가 정규로 보이더라도 실제로는 정규가 아닌 경우가 있으며, 이의 판단은 합성 분산의 확률 분포로 할 수 있다. 셋째, 자유도가 낮은 A형 불확도가 불확도 평가에 포함된 경우 GUM은 포함 구간을 저평가하는 것을 알 수 있었고, 이러한 저평가 문제는 A형 표준 불확도에 t-분포의 표준 편차를 곱해주면 사라지는 것을 알 수 있었다. 이 경우 합성 분산의 유효 자유도는 확장 불확도 계산에 불필요하고, 신뢰의 수준 95 %의 포함 인자는 1.96이 적정한 것을 알 수 있었다.