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I. INTRODUCTION 
 
Motion planning has been an essential part of robotics for 

a long time. Many algorithms have been developed, which 
develop a plan for a robot to move from the initial 
configuration to the target configuration. Nevertheless, 
algorithm complexity has been a challenge for real-life 
applications. 

The development of motion planning from graph search 
algorithms [1] and has led to the modern complicated 
sampling-based algorithms [2]. Dijkstra’s algorithm is one 
of the simplest and basic algorithms for finding paths on 
a graph. One of the approaches for the construction of a 

motion plan in a configuration space is to discretize the 
space with hyper-cubes and then, execute a graph search 
algorithm on a discrete structure. However, in practical 
applications, this approach can rarely be used for tasks with 
high dimensionality, because the algorithm complexity 
increases exponentially. 

An extension of Dijkstra’s algorithm, which is called A* 
[1], introduced heuristics for graph-search algorithms to 
significantly improve the algorithm’s performance in terms of 
the computation time, depending on the task. 

The other successful approach for motion planning in a 
high-dimensional space is the Rapidly Exploring Random 
Tree algorithm [3]. This algorithm rapidly extends a tree 
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Abstract 
This paper discusses computer-generated heuristics for motion planning. Planning with many degrees of freedom is a 
challenging task, because the complexity of most planning algorithms grows exponentially with the number of dimensions of 
the problem. A well-designed heuristic may greatly improve the performance of a planning algorithm in terms of the 
computation time. However, in recent years, with increasingly challenging high-dimensional planning problems, the design of 
good heuristics has itself become a complicated task. In this paper, we present an approach to algorithmically develop a 
heuristic for motion planning, which increases the efficiency of a planner in similar environments. To implement the idea, we 
generalize modern motion planning algorithms to an extent, where a heuristic is represented as a set of random variables. 
Distributions of the variables are then analyzed with computer learning methods. The analysis results are then utilized to 
generate a heuristic. During the experiments, the proposed approach is applied to several planning tasks with different 
algorithms and is shown to improve performance. 
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structure in a high-dimensional space and has proved to be 
efficient in many practical applications. However, it suffers 
in the presence of narrow paths. Various methods have been 
proposed to overcome this problem [4]. 

However, in recent years, more attention has been drawn 
to the area of experience-based planning, because tasks have 
become increasingly complicated. Re-planning strategies in 
similar environments are covered in [5-7]. Trajectory 
libraries approaches are covered in [8-10]. 

Heuristics are applied in many practical motion planning 
tasks. However, as planning problems become increasingly 
difficult, the complexity of heuristics increases, and 
designing a heuristic itself becomes a challenging task. 

The main contribution of this work is the development of 
an approach for the algorithmic generation of heuristics. The 
work is done in the following steps: 
· Represent a motion planning algorithm’s interaction with 

the environment as a random process. 
· Represent a heuristic as a distribution of random 

variables that control the random process of planning. 
· Since a heuristic is usually developed by humans on the 

basis of their knowledge about the type of environment 
or the type of task. Assume that knowledge about 
environment is the knowledge of the distribution of 
obstacles in the environment. 

· Apply machine learning to learn the distribution of 
obstacles in typical environments. Utilize the learnt 
distributions as a heuristic to control the extension of a 
motion planning algorithm. 

In the experimental section, the designed heuristic is 
applied to different types of motion planning algorithms in 
order to show the performance improvement. 
 
 
II. PROPOSED METHOD DESCRIPTION 
 
A. Heuristic and Distribution of Obstacles 
 

Let us consider an example of motion planning in a two-
dimensional space for a point mass in a free space. The 
shortest path would be a straight line, connecting the initial 
and the target configurations. The shortest path is different 
from a straight line, if there are obstacles between the initial 
and the target points. Therefore, obstacles do affect the final 
plan. 

Now, let us analyze an example of planning in a real 
environment with obstacles. Let us have an intelligent agent 
A, and an observable environment I around it. We can model 
this environment I in a natural world with a vector of 
random variables X = {X1, X2, ..., Xn}. If we take another 
vector of uniformly distributed random variables, then the 
information content of X would be lower than a uniform 
random and thus, would have a certain pattern. We use the 

term information from the information theory developed by 
Shannon [11]. It means that the average length of the 
sequence that encodes the environment I would be shorter 
than the sequence to encode the vector of uniformly 
distributed independent random variables. 

To illustrate the above idea, let us consider an example of 
a robot, which navigates on the ground. Let us model the 
surrounding physical world as a set of tuples {p, o}, where p 
denotes the position of the object’s center mass and o 
represents the orientation of an object along the longest 
dimension. This is one example of how the problem may be 
modeled for the planning algorithm. 

We can also model the above-mentioned world with 
random variables X and Y, the first corresponding to the 
position and the second to the orientation. What would the 
distribution of these variables be? Here, the laws of nature 
and the corresponding constraints start to affect the 
distribution. For our example, let us take gravitation. 
Without gravitation, the distribution of Y would be closer to 
uniform. However, in the real world, most of the objects are 
either vertical or horizontal. This implies that the entropy 
H(Y) is less than the maximum value, which is the entropy 
of a uniform distribution.  

Basic planning algorithms without heuristics are designed 
to be systematic and sufficiently universal to deal with any 
kind of input problems. Thus, they consider that obstacles 
are distributed uniformly. However, in fact, if obstacles have 
some pattern and are not distributed uniformly, then the 
planner may work inefficiently. This has led to the 
introduction of various heuristics to make planning 
algorithms solve particular problems more efficiently. 

Let us represent the interaction between a planner and an 
environment as a random process. As a heuristic controls the 
behavior of this interaction at every cycle of the algorithm, 
the heuristic is considered to be a distribution of the possible 
actions that the planner could perform. 

It should be noted that a heuristic may be deterministic 
with respect to some calculated values, and have conditional 
entropy equal to zero (e.g., the A* algorithm), but due to the 
randomness of obstacles, the full entropy of the heuristic 
may be more than zero. 

The main idea behind this work is as follows: If a 
human designs a heuristic for a particular task, then it 
means that he/she tries to model a probability distribution 
function of the actions that the planner would take. In 
the proposed approach, we try to model this probability 
distribution function algorithmically, with the help of 
machine learning. 
 
B. Generalized Planning Framework 

 
To further analyze motion planning algorithms and 

heuristics, let us describe a generalized planning framework.  
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It is an algorithm template that may be instantiated to 
describe most of the modern sampling-based planning 
algorithms. See Algorithm 1. 

G(V,E) is a graph, which is extended to cover the 
configuration space. The main extension point of the 
algorithm is the function selectNodeAndAction(G). 

This function generates a pair {qext, unew}, where qext 
denotes a node of graph G, which is to be extended, and unew 
represents an action that will be applied to the system from 
the state qext. The function propagate(qext, unew) serves as a 
collision checker, which integrates the control input and 
validates whether the generated path or trajectory is 
collision free. 

The generalized framework may be extended to be a 
random tree, with configurations sampled according to some 
random distributions. Algorithm 2 is an extension of a 
template for a randomly built tree. Nodes qcand to be 
extended are selected with a random variable X, and the 
control input is selected with a random variable Y. 

This graph extension strategy is itself sufficiently general, 
because it can model other sampling-based planning 
algorithms in terms of the distributions of random variables 
X and Y. 

EXAMPLE 1: X and Y have a uniform distribution. Any 
node in the graph is selected randomly with equal 
probability for all nodes, and the control input is also 
selected to be a uniformly random direction. This example is 

important because we may use it as an unbiased random 
planner without heuristics. Therefore, we can consider a bias 
in the distribution of random variables X and Y as a heuristic. 

The generalized algorithm may also be utilized to 
implement the well-known Rapidly Exploring Random 
Trees (RRT) [4]. The extension of the function 
selectNodeAndAction(G) for the RRT implementation is 
shown in Algorithm 3. In line 2, a random configuration is 
selected. The node to be extended is the node in the tree, 
which is the nearest node to the selected candidate 
configuration. The control input is then determined as a 
control input, required to bring a robot from configuration 
qext to the configuration qcand, limited by a maximum time 
step of Δt. 

EXAMPLE 2: RRT may be modeled by biasing 
distributions of X and Y. For X, the distribution will be 
determined by the current graph G, which is being extended. 
The existing nodes divide the configuration space with 
Voronoi cells. These cells have different areas, and nodes 
that are closer to the unexplored areas have a larger area of 
Voronoi cells around it. In the implementation of the RRT 
algorithm, the probability of a node x to be selected is 
proportional to the volume of the Voronoi cell around this 
node. The distribution for Y also depends on the size and the 
shape of the Voronoi cell around the node. 

We can conclude from these two examples that biasing of 
the distribution of X and Y creates a heuristic, which 
controls the extension of a search graph. The RRT nodes 
with large Voronoi regions, which are the nodes closer to the 
unexplored area, have larger chances to be extended. In 
other words, RRT has the heuristic of exploring the 
unknown regions. 

For the study presented in the given work, we apply 
machine learning algorithms to find the distribution of the 
variable Y, which would make our motion planner work 
more efficiently. During the experiments, we compare the 
performance of planning with the learnt distribution of Y in 
two cases: {uniform X and uniform Y} vs. {uniform X and 
learnt Y}; and {RRT-based X and RRT-based Y} vs. {RRT-
based X and learnt Y}. 
 
 
III. EXPERIMENTS AND DISCUSSION 
 

This section describes how heuristics may adapt to the 
given typical environment by learning. Learning is 
implemented as finding the probability distribution function 
of a planner’s parameters from the observations of a typical 
environment. 

In previous sections, sampling-based planners were 
generalized to a tree structure, which expands in a search 
space. The expansion is parameterized in two ways. The 
first is which a node is selected to be extended, and the  
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Table 1. Performance of self-learning heuristics applied to random tree 
search algorithm 

Metric Unbiased Learning Improvement 
Iteration 500,000 (0) 84,000 (42,473) 5.95 
Collision 136,510 (848) 28,598 (16,909) 4.77 
Path length fail 1,665 (65) - 

Values are presented as mean (standard deviation) or number of times. 
 

Table 2. Performance of random tree search algorithm with self-
learning heuristics when the number of iteration is fixed 

Metric Unbiased Learning Improvement 
Iteration 1,000 (0) 1,000 (0) 1 
Collision 259 (18) 412 (37) 0.62 
Path length fail fail - 
Values are presented as mean (standard deviation) or number of times. 

 
second is the selection of the control input to be applied to 
the extending node. 

In the presented experiment, the second parameter is 
utilized to improve the performance of a planning algorithm. 
The control input is learned from the observations of 
successfully generated paths. RRT was used to generate the 
paths for the observations. 

After the probability distribution function was approx-
imated with the sum of the Gauss distributions with learned 
means, it was applied to the sampling of the control input. 

In order to show that z planner with applied self-learning 
heuristics performs better, we applied the proposed strategy 
to different sampling-based planners. Planners were selected 
to differ in the way nodes for extensions are selected. In the 
first case, we utilized the uniform random selection of nodes 
from the whole tree. In the second case, we utilized the 
selection of nodes for rapid expansion in space. The 
probability that a node is selected is proportional to the 
volume of the Voronoi cell that corresponds to the node. 

All the algorithms were run 10 times. The number of 
iterations, number of failed collision checks, and path 
lengths were recorded. In the first run, the algorithms were 
run until the path was found. In the second run, planning 
was run for a fixed number of iterations. 

The results of the experiments with random node 
selections are shown in Tables 1 and 2. As is apparent, 
random node selection is inefficient, and an unbiased 
algorithm could not find the solution even after 500,000 
iterations. Self-learning heuristics improved the perfor-
mance of the planner, and thus, it could find a solution. The 
boundaries of exploration can be seen in Fig. 1. 

The results of the experiments with rapidly expanding 
node selection are shown in Tables 3 and 4. This strategy 
extends the algorithm faster. An unbiased version of the 
algorithm is in fact an implementation of an RRT algorithm. 
Self-learning heuristics improved the performance of the 

planner, and thus, it could find the solution faster as shown 
in Fig. 2. Planning is performed from the initial point in the 
left top corner to the goal point in the right bottom corner. 

Unlike expected, the self-learning heuristics caused more 
collision check fails during the test with a fixed number of 
iterations (See Table 2). In both cases, motion planners 
failed to reach the goal; therefore, the number of iterations 
was considerably small. If compared to the results from 
Table 1, it may be seen that the self-learning heuristic 
experiences relatively few collision failures before it reaches 
the target.  
 
 

 
(a)  

 
(b)  

Fig. 1. Comparison of the performance of a planner with random 
selection of nodes for expansion. The initial point is in the top left corner, 
and the final point is at the bottom right. (a) Unbiased control input. After 
500,000 iterations, a path was still not found. (b) Control input biased by 
self-learning heuristics. 
 

Table 3. Performance of self-learning heuristics applied to the search 
algorithm with Voronoi cell volume-based node selection 

Metric Unbiased Learning Improvement 
Iteration 1042 (1521) 203 (94) 5.13 
Collision 243 (253) 92 (58) 2.64 
Path length 1711 (166) 1620 (107) 1.056 

Values are presented as mean (standard deviation) or number of times. 
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(a)  

 
(b)  

Fig. 2. Performance of planner with selection of nodes for expansion 
with rapid expansion. Extension is performed from the Init configuration to 
the Goal configuration. (a) Unbiased control input and (b) control input 
biased by self-learning heuristics. 
 

Table 4. Performance of the search algorithm with Voronoi cell volume-
based node selection and self-learning heuristics when the number of 
iteration is fixed 

Metric Unbiased Learning Improvement 
Iteration 1,000 (0) 1,000 (0) 1 
Collision 206 (42) 392 (27) 0.52 
Path length 1,652 (167) 1,642 (52) 1.006 

Values are presented as mean (standard deviation) or number of times. 
 

Table 5. Results of running algorithm, until a path is found, on a map 
with narrow paths: random tree with Voronoi cell volume-based node 
selection: comparison with and without self-learning heuristics 

Metric Unbiased Learning Improvement 
Iteration 2,566 (3720) 544 (299) 4.7 
Collision 1,831 (2725) 405 (231) 4.5 
Path length 1,704 (113) 1,642 (85) 1.03 

Values are presented as mean (standard deviation) or number of times. 

 

Fig. 3. Performance of the planning algorithm on a map with narrower 
paths. 

 
 
The same experiments were also performed on a similar 

map, with a considerably narrower distance between squares; 
see Fig. 3. The result is presented in Table 5. As expected, 
the original RRT’s performance started to drop significantly. 
In our experiments it sometimes took more than 10,000 
iterations and the algorithm still could not find the solution. 
Because of these failures, the average number of iterations 
is high. In all three experiments, the algorithms enhanced 
with self-learning heuristics improved the performance of 
the original algorithm. 
 

IV. CONCLUSIONS 
 
In this work, we have proposed a method, which allows 

heuristics for a motion planner to be generated by a 
computer by observing the results of prior successful 
planning tasks in the environment. We have experimentally 
shown that if planning algorithms are generalized and 
parameterized with two random variables, then the 
observation of the distribution of these parameters on 
successful paths may be utilized to create a heuristic. The 
proposed method was applied to different sampling-based 
planning algorithms in different environments, and in all 
cases, it showed performance improvements. 
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