
 116

I. INTRODUCTION

Motion planning has been an essential part of robotics for

a long time. Many algorithms have been developed, which
develop a plan for a robot to move from the initial
configuration to the target configuration. Nevertheless,
algorithm complexity has been a challenge for real-life
applications.

The development of motion planning from graph search
algorithms [1] and has led to the modern complicated
sampling-based algorithms [2]. Dijkstra’s algorithm is one
of the simplest and basic algorithms for finding paths on
a graph. One of the approaches for the construction of a

motion plan in a configuration space is to discretize the
space with hyper-cubes and then, execute a graph search
algorithm on a discrete structure. However, in practical
applications, this approach can rarely be used for tasks with
high dimensionality, because the algorithm complexity
increases exponentially.

An extension of Dijkstra’s algorithm, which is called A*
[1], introduced heuristics for graph-search algorithms to
significantly improve the algorithm’s performance in terms of
the computation time, depending on the task.

The other successful approach for motion planning in a
high-dimensional space is the Rapidly Exploring Random
Tree algorithm [3]. This algorithm rapidly extends a tree

Received 03 December 2013, Revised 01 February 2014, Accepted 17 February 2014
*Corresponding Author Eun-Gyung Kim (E-mail: egkim@koreatech.ac.kr, Tel: +82-41-560-1350)
School of Computer Science & Engineering, Korea University of Technology and Education, 1600, Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu,
Cheonan 330-708, Korea.

 http://dx.doi.org/10.6109/jicce.2014.12.2.116 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/li-censes/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

J. lnf. Commun. Converg. Eng. 12(2): 116-121, Jun. 2014 Regular paper

Heuristics for Motion Planning Based on Learning in Similar
Environments

Dmitriy Ogay1 and Eun-Gyung Kim2*, Members, KIICE
1Department of Computer Science & Engineering, Graduate School, Korea University of Technology and Education, Cheonan 330-
708, Korea
2School of Computer Science & Engineering, Korea University of Technology and Education, Cheonan 330-708, Korea

Abstract
This paper discusses computer-generated heuristics for motion planning. Planning with many degrees of freedom is a
challenging task, because the complexity of most planning algorithms grows exponentially with the number of dimensions of
the problem. A well-designed heuristic may greatly improve the performance of a planning algorithm in terms of the
computation time. However, in recent years, with increasingly challenging high-dimensional planning problems, the design of
good heuristics has itself become a complicated task. In this paper, we present an approach to algorithmically develop a
heuristic for motion planning, which increases the efficiency of a planner in similar environments. To implement the idea, we
generalize modern motion planning algorithms to an extent, where a heuristic is represented as a set of random variables.
Distributions of the variables are then analyzed with computer learning methods. The analysis results are then utilized to
generate a heuristic. During the experiments, the proposed approach is applied to several planning tasks with different
algorithms and is shown to improve performance.

Index Terms: Heuristics, Learning from experience, Machine learning, Motion planning, Path finding

Open Access

Heuristics for Motion Planning Based on Learning in Similar Environments

http://jicce.org 117

structure in a high-dimensional space and has proved to be
efficient in many practical applications. However, it suffers
in the presence of narrow paths. Various methods have been
proposed to overcome this problem [4].

However, in recent years, more attention has been drawn
to the area of experience-based planning, because tasks have
become increasingly complicated. Re-planning strategies in
similar environments are covered in [5-7]. Trajectory
libraries approaches are covered in [8-10].

Heuristics are applied in many practical motion planning
tasks. However, as planning problems become increasingly
difficult, the complexity of heuristics increases, and
designing a heuristic itself becomes a challenging task.

The main contribution of this work is the development of
an approach for the algorithmic generation of heuristics. The
work is done in the following steps:
· Represent a motion planning algorithm’s interaction with

the environment as a random process.
· Represent a heuristic as a distribution of random

variables that control the random process of planning.
· Since a heuristic is usually developed by humans on the

basis of their knowledge about the type of environment
or the type of task. Assume that knowledge about
environment is the knowledge of the distribution of
obstacles in the environment.

· Apply machine learning to learn the distribution of
obstacles in typical environments. Utilize the learnt
distributions as a heuristic to control the extension of a
motion planning algorithm.

In the experimental section, the designed heuristic is
applied to different types of motion planning algorithms in
order to show the performance improvement.

II. PROPOSED METHOD DESCRIPTION

A. Heuristic and Distribution of Obstacles

Let us consider an example of motion planning in a two-
dimensional space for a point mass in a free space. The
shortest path would be a straight line, connecting the initial
and the target configurations. The shortest path is different
from a straight line, if there are obstacles between the initial
and the target points. Therefore, obstacles do affect the final
plan.

Now, let us analyze an example of planning in a real
environment with obstacles. Let us have an intelligent agent
A, and an observable environment I around it. We can model
this environment I in a natural world with a vector of
random variables X = {X1, X2, ..., Xn}. If we take another
vector of uniformly distributed random variables, then the
information content of X would be lower than a uniform
random and thus, would have a certain pattern. We use the

term information from the information theory developed by
Shannon [11]. It means that the average length of the
sequence that encodes the environment I would be shorter
than the sequence to encode the vector of uniformly
distributed independent random variables.

To illustrate the above idea, let us consider an example of
a robot, which navigates on the ground. Let us model the
surrounding physical world as a set of tuples {p, o}, where p
denotes the position of the object’s center mass and o
represents the orientation of an object along the longest
dimension. This is one example of how the problem may be
modeled for the planning algorithm.

We can also model the above-mentioned world with
random variables X and Y, the first corresponding to the
position and the second to the orientation. What would the
distribution of these variables be? Here, the laws of nature
and the corresponding constraints start to affect the
distribution. For our example, let us take gravitation.
Without gravitation, the distribution of Y would be closer to
uniform. However, in the real world, most of the objects are
either vertical or horizontal. This implies that the entropy
H(Y) is less than the maximum value, which is the entropy
of a uniform distribution.

Basic planning algorithms without heuristics are designed
to be systematic and sufficiently universal to deal with any
kind of input problems. Thus, they consider that obstacles
are distributed uniformly. However, in fact, if obstacles have
some pattern and are not distributed uniformly, then the
planner may work inefficiently. This has led to the
introduction of various heuristics to make planning
algorithms solve particular problems more efficiently.

Let us represent the interaction between a planner and an
environment as a random process. As a heuristic controls the
behavior of this interaction at every cycle of the algorithm,
the heuristic is considered to be a distribution of the possible
actions that the planner could perform.

It should be noted that a heuristic may be deterministic
with respect to some calculated values, and have conditional
entropy equal to zero (e.g., the A* algorithm), but due to the
randomness of obstacles, the full entropy of the heuristic
may be more than zero.

The main idea behind this work is as follows: If a
human designs a heuristic for a particular task, then it
means that he/she tries to model a probability distribution
function of the actions that the planner would take. In
the proposed approach, we try to model this probability
distribution function algorithmically, with the help of
machine learning.

B. Generalized Planning Framework

To further analyze motion planning algorithms and

heuristics, let us describe a generalized planning framework.

J. lnf. Commun. Converg. Eng. 12(2): 116-121, Jun. 2014

http://dx.doi.org/10.6109/jicce.2014.12.2.116 118

It is an algorithm template that may be instantiated to
describe most of the modern sampling-based planning
algorithms. See Algorithm 1.

G(V,E) is a graph, which is extended to cover the
configuration space. The main extension point of the
algorithm is the function selectNodeAndAction(G).

This function generates a pair {qext, unew}, where qext
denotes a node of graph G, which is to be extended, and unew
represents an action that will be applied to the system from
the state qext. The function propagate(qext, unew) serves as a
collision checker, which integrates the control input and
validates whether the generated path or trajectory is
collision free.

The generalized framework may be extended to be a
random tree, with configurations sampled according to some
random distributions. Algorithm 2 is an extension of a
template for a randomly built tree. Nodes qcand to be
extended are selected with a random variable X, and the
control input is selected with a random variable Y.

This graph extension strategy is itself sufficiently general,
because it can model other sampling-based planning
algorithms in terms of the distributions of random variables
X and Y.

EXAMPLE 1: X and Y have a uniform distribution. Any
node in the graph is selected randomly with equal
probability for all nodes, and the control input is also
selected to be a uniformly random direction. This example is

important because we may use it as an unbiased random
planner without heuristics. Therefore, we can consider a bias
in the distribution of random variables X and Y as a heuristic.

The generalized algorithm may also be utilized to
implement the well-known Rapidly Exploring Random
Trees (RRT) [4]. The extension of the function
selectNodeAndAction(G) for the RRT implementation is
shown in Algorithm 3. In line 2, a random configuration is
selected. The node to be extended is the node in the tree,
which is the nearest node to the selected candidate
configuration. The control input is then determined as a
control input, required to bring a robot from configuration
qext to the configuration qcand, limited by a maximum time
step of Δt.

EXAMPLE 2: RRT may be modeled by biasing
distributions of X and Y. For X, the distribution will be
determined by the current graph G, which is being extended.
The existing nodes divide the configuration space with
Voronoi cells. These cells have different areas, and nodes
that are closer to the unexplored areas have a larger area of
Voronoi cells around it. In the implementation of the RRT
algorithm, the probability of a node x to be selected is
proportional to the volume of the Voronoi cell around this
node. The distribution for Y also depends on the size and the
shape of the Voronoi cell around the node.

We can conclude from these two examples that biasing of
the distribution of X and Y creates a heuristic, which
controls the extension of a search graph. The RRT nodes
with large Voronoi regions, which are the nodes closer to the
unexplored area, have larger chances to be extended. In
other words, RRT has the heuristic of exploring the
unknown regions.

For the study presented in the given work, we apply
machine learning algorithms to find the distribution of the
variable Y, which would make our motion planner work
more efficiently. During the experiments, we compare the
performance of planning with the learnt distribution of Y in
two cases: {uniform X and uniform Y} vs. {uniform X and
learnt Y}; and {RRT-based X and RRT-based Y} vs. {RRT-
based X and learnt Y}.

III. EXPERIMENTS AND DISCUSSION

This section describes how heuristics may adapt to the
given typical environment by learning. Learning is
implemented as finding the probability distribution function
of a planner’s parameters from the observations of a typical
environment.

In previous sections, sampling-based planners were
generalized to a tree structure, which expands in a search
space. The expansion is parameterized in two ways. The
first is which a node is selected to be extended, and the

Heuristics for Motion Planning Based on Learning in Similar Environments

http://jicce.org 119

Table 1. Performance of self-learning heuristics applied to random tree
search algorithm

Metric Unbiased Learning Improvement
Iteration 500,000 (0) 84,000 (42,473) 5.95
Collision 136,510 (848) 28,598 (16,909) 4.77
Path length fail 1,665 (65) -

Values are presented as mean (standard deviation) or number of times.

Table 2. Performance of random tree search algorithm with self-
learning heuristics when the number of iteration is fixed

Metric Unbiased Learning Improvement
Iteration 1,000 (0) 1,000 (0) 1
Collision 259 (18) 412 (37) 0.62
Path length fail fail -
Values are presented as mean (standard deviation) or number of times.

second is the selection of the control input to be applied to
the extending node.

In the presented experiment, the second parameter is
utilized to improve the performance of a planning algorithm.
The control input is learned from the observations of
successfully generated paths. RRT was used to generate the
paths for the observations.

After the probability distribution function was approx-
imated with the sum of the Gauss distributions with learned
means, it was applied to the sampling of the control input.

In order to show that z planner with applied self-learning
heuristics performs better, we applied the proposed strategy
to different sampling-based planners. Planners were selected
to differ in the way nodes for extensions are selected. In the
first case, we utilized the uniform random selection of nodes
from the whole tree. In the second case, we utilized the
selection of nodes for rapid expansion in space. The
probability that a node is selected is proportional to the
volume of the Voronoi cell that corresponds to the node.

All the algorithms were run 10 times. The number of
iterations, number of failed collision checks, and path
lengths were recorded. In the first run, the algorithms were
run until the path was found. In the second run, planning
was run for a fixed number of iterations.

The results of the experiments with random node
selections are shown in Tables 1 and 2. As is apparent,
random node selection is inefficient, and an unbiased
algorithm could not find the solution even after 500,000
iterations. Self-learning heuristics improved the perfor-
mance of the planner, and thus, it could find a solution. The
boundaries of exploration can be seen in Fig. 1.

The results of the experiments with rapidly expanding
node selection are shown in Tables 3 and 4. This strategy
extends the algorithm faster. An unbiased version of the
algorithm is in fact an implementation of an RRT algorithm.
Self-learning heuristics improved the performance of the

planner, and thus, it could find the solution faster as shown
in Fig. 2. Planning is performed from the initial point in the
left top corner to the goal point in the right bottom corner.

Unlike expected, the self-learning heuristics caused more
collision check fails during the test with a fixed number of
iterations (See Table 2). In both cases, motion planners
failed to reach the goal; therefore, the number of iterations
was considerably small. If compared to the results from
Table 1, it may be seen that the self-learning heuristic
experiences relatively few collision failures before it reaches
the target.

(a)

(b)

Fig. 1. Comparison of the performance of a planner with random
selection of nodes for expansion. The initial point is in the top left corner,
and the final point is at the bottom right. (a) Unbiased control input. After
500,000 iterations, a path was still not found. (b) Control input biased by
self-learning heuristics.

Table 3. Performance of self-learning heuristics applied to the search
algorithm with Voronoi cell volume-based node selection

Metric Unbiased Learning Improvement
Iteration 1042 (1521) 203 (94) 5.13
Collision 243 (253) 92 (58) 2.64
Path length 1711 (166) 1620 (107) 1.056

Values are presented as mean (standard deviation) or number of times.

J. lnf. Commun. Converg. Eng. 12(2): 116-121, Jun. 2014

http://dx.doi.org/10.6109/jicce.2014.12.2.116 120

(a)

(b)

Fig. 2. Performance of planner with selection of nodes for expansion
with rapid expansion. Extension is performed from the Init configuration to
the Goal configuration. (a) Unbiased control input and (b) control input
biased by self-learning heuristics.

Table 4. Performance of the search algorithm with Voronoi cell volume-
based node selection and self-learning heuristics when the number of
iteration is fixed

Metric Unbiased Learning Improvement
Iteration 1,000 (0) 1,000 (0) 1
Collision 206 (42) 392 (27) 0.52
Path length 1,652 (167) 1,642 (52) 1.006

Values are presented as mean (standard deviation) or number of times.

Table 5. Results of running algorithm, until a path is found, on a map
with narrow paths: random tree with Voronoi cell volume-based node
selection: comparison with and without self-learning heuristics

Metric Unbiased Learning Improvement
Iteration 2,566 (3720) 544 (299) 4.7
Collision 1,831 (2725) 405 (231) 4.5
Path length 1,704 (113) 1,642 (85) 1.03

Values are presented as mean (standard deviation) or number of times.

Fig. 3. Performance of the planning algorithm on a map with narrower
paths.

The same experiments were also performed on a similar

map, with a considerably narrower distance between squares;
see Fig. 3. The result is presented in Table 5. As expected,
the original RRT’s performance started to drop significantly.
In our experiments it sometimes took more than 10,000
iterations and the algorithm still could not find the solution.
Because of these failures, the average number of iterations
is high. In all three experiments, the algorithms enhanced
with self-learning heuristics improved the performance of
the original algorithm.

IV. CONCLUSIONS

In this work, we have proposed a method, which allows

heuristics for a motion planner to be generated by a
computer by observing the results of prior successful
planning tasks in the environment. We have experimentally
shown that if planning algorithms are generalized and
parameterized with two random variables, then the
observation of the distribution of these parameters on
successful paths may be utilized to create a heuristic. The
proposed method was applied to different sampling-based
planning algorithms in different environments, and in all
cases, it showed performance improvements.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge: Cambridge

University Press, 2006.
[2] D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning

framework that learns from experience,” in Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), St. Paul, MN, pp. 3671-3678, 2012.

[3] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic

Heuristics for Motion Planning Based on Learning in Similar Environments

http://jicce.org 121

planning,” International Journal of Robotics Research, vol. 20, no.
5, pp. 378-400, 2001.

[4] S. Dalibard and J. P. Laumond, “Control of probabilistic diffusion
in motion planning,” in Algorithmic Foundation of Robotics VIII.
Heidelberg: Springer, pp. 467-481, 2009.

[5] J. M. Lien and Y. Lu, “Planning motion in environments with
similar obstacles,” in Proceedings of Robotics: Science and
Systems, Seattle, WA, pp. 1-7, 2009.

[6] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite RRTs for
rapid replanning in dynamic environments,” in Proceedings of the
IEEE International Conference on Robotics and Automation,
Rome, Italy, pp. 1603-1609, 2007.

[7] M. Zucker, J. Kuffner, and J. A. Bagnell, “Adaptive workspace
biasing for sampling-based planners,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA),
Pasadena, CA, pp. 3757-3762, 2008.

[8] S. Martin, S. Wright, and J. Sheppard, “Offline and online
evolutionary bi-directional RRT algorithms for efficient re-
planning in environments with moving obstacles,” in Proceedings
of the IEEE International Conference on Automation Science and
Engineering, Scottsdale, AZ, pp. 1131-1136, 2007.

[9] C. G. Atkeson and J. Morimoto, “Nonparametric representation of
policies and value functions: a trajectory-based approach,” in
Proceedings of the Neural Information Processing Systems
Conference (Advances in Neural Information Processing Systems),
Vancouver, Canada, pp. 1611-1618, 2003.

[10] M. Stolle and C. G. Atkeson, “Policies based on trajectory
libraries,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), Orlando, FL, pp. 3344-3349,
2006.

[11] C. E. Shannon, “A mathematical theory of communication,” Bell
System Technical Journal, vol. 27, pp. 379-423, 623-656, 1948.

received his bachelor’s degree in July 2004 and his master’s degree in February 2008 from the Computer Science
Department of National Aviation University, Kiev, Ukraine. He received his Ph.D. degree in February 2014 from the
Department of Computer Science & Engineering, Graduate School of KOREATECH. His research interests include
motion planning, machine learning, and parallel and distributed programming.

received her bachelor’s degree in February 1983 from the Physics Department of Sookmyung Women’s University,
her master’s degree in February 1987 from the Computer Science Department of the Graduate School of Chung-Ang
University, and her Ph.D. in February 1991 from the Computer Engineering Department of the Graduate School of
Chung-Ang University. Since March 1992, she has been working with the School of Computer Science & Engineering
at KOREATECH and is at present, a professor. Her research interests include intelligent agents, smart learning, and
TRIZ.

