DOI QR코드

DOI QR Code

Behavior of Column-Foundation Joint under Vehicle Impact

차량 충돌에 의한 기둥의 콘크리트 기초 접합부 거동 평가

  • Kang, Hyun-Goo (Dept. of Civil-Architectural and Environmental System Engineering, Sungkyunkwan University) ;
  • Kim, Jin-Koo (Dept. of Civil and Architectural Engineering, Sungkyunkwan University)
  • 강현구 (성균관대학교 건설환경시스템공학과) ;
  • 김진구 (성균관대학교 건축토목공학과)
  • Received : 2014.04.18
  • Accepted : 2014.06.09
  • Published : 2014.06.30

Abstract

Structures are often subject to vehicle collision which can be accidental or terrorist attack. Previous research shows that the damage in major columns may result in progressive collapse of a whole building. This study investigates the performance of a steel column standing on a reinforced concrete footing subjected to a vehicle collision. The size and the axial load of the steel column are determined based on the assumption that it is the first story corner column in a typical three-story building with six meter span length. The finite element model of a eight-ton single unit truck provided by the NCAC (National Crash Analysis Center) is used in the numerical analysis. The finite element analysis is performed using the LS-DYNA, and the results show that the behavior of the column subjected to car impact depends largely on the column-foundation connection detail.

구조물은 사고 혹은 테러에 의한 공격 등과 같은 차량에 의한 충돌에 노출되어 있으며, 차량 충격이 구조물의 주요 기둥에 발생 할 경우 구조물 전체가 연쇄붕괴로 인하여 붕괴 할 수 있다. 이 연구에서는 차량 충격하중을 받는 강재 기둥과 콘크리트 기초 상부 접합부의 거동 및 보강방법에 관하여 분석하였다. 충돌해석을 위하여 모델링 된 단일 강재 기둥의 크기와 기둥이 받는 축 하중의 양은 일반적인 3층, 6 m길이의 3경간 구조물의 1층에 위치한 기둥으로 가정하였다. 또한 충돌해석에 사용한 8톤 트럭은 미국 NCAC(National Crash Analysis Center)에서 제공한 모델을 사용하였다. 충돌 해석은 상용 유한요소 프로그램인 LS-DYNA를 사용하였으며 차량 충돌해석 해석 결과, 충격하중을 받는 기둥은 기초 상부 앵커볼트 및 접합부 형태에 큰 영향을 받는 것으로 나타났다.

Keywords

References

  1. Cormie. D., Mays, G., and Smith, P., "Vehicle-Borne Threats and the Principles of Hostile Vehicle Mitigation," Blast Effects on Buildings (2nd Edition), Thomas Telford Limited, 2009, pp. 250-273.
  2. Tay, S. K., Lim, B., and NG, S. H., "Crash Impact Modelling of Security Bollard," 12th International LS-DYNA(R) Users Conference 13, 2012, pp. 1-10.
  3. Borovinsek, M., Vesenjak, M., Ulbin, M., and Ren, Z., "Simulation of Crash Tests for High Containment Levels of Road Safety Barriers," Engineering Failure Analysis, Vol. 14, Issue 8, 2007, pp. 1711-1718. (doi: http://dx.doi.org/10.1016/j.engfailanal.2006.11.068)
  4. Itoh, Y., Liu, C., and Kusama, R., "Dynamic Simulation of Collisions of Heavy High-Speed Trucks with Concrete Barriers," Chaos, Solitons and Fractals, Vol. 34, Issue 4, 2007, pp. 1239-1244. (doi: http://dx.doi.org/10.1016/j.chaos.2006.05.059)
  5. Liu, Y., "Study of Thin-Walled Box Beams Crushing Behavior Using LS-DYNA," 11th International LS-DYNA(R) Users Conference 13, 2011, pp. 31-40.
  6. Sharma, H., Hurlebaus, S., and Gardoni, P., "Performance- Based Response Evaluation of Reinforced Concrete Columns Subject to Vehicle Impact," International Journal of Impact Engineering, Vol. 43, Issue 5, 2012, pp. 52-62. (doi: http://dx.doi.org/10.1016/j.ijimpeng.2011.11.007)
  7. GSA, "Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects," US General Services Administration, 2003, pp. 1-1-2-5.
  8. UFC, "Unified Facilities Criteria, Design of Buildings to Resist Progressive Collapse," (UFC 4-023-03), U. S. Department of Defense, USA, 2013, pp. 1-58.
  9. Kim, J., Lee, S., and Choi, H., "Progressive Collapse Resisting Capacity of Moment Frames with Viscous Dampers," The Structural Design of Tall and Special Buildings, Vol. 22, Issue 5, 2013, pp. 399-414. https://doi.org/10.1002/tal.692
  10. NCAC, 2010, National Crash Analysis Center, http://www.ncac.gwu.edu/.
  11. Kim, J. H., Yi, N. H., Phan, D. H., Kim, S. B., and Lee, K. W., "Development of Performance Based Resistance Capacity Evaluation Method for RC Compression Member under Vehicle Impact Load," Journal of the Korea Concrete Institute, Vol. 22, No. 4, 2010, pp. 535-546. https://doi.org/10.4334/JKCI.2010.22.4.535
  12. Korea Architectural Institute, KBC, Design Codes for Building Structures, Seoul, Korea, 2009, pp. 85-160.
  13. LS-DYNA, Theory Manual Version 971, (C) Livemore Software Technology Corporation, 2006, pp. 19.15-19.19.
  14. Cowper, G. R. and Symonds, P. S., "Strain Hardening and Strain Rate Effects in the Impact Loading of Cantilever Beams," Brown University, Applied Mathematics Report, 1958, pp. 1-46.
  15. B. Ferrer, S., Ivorra, E., and Segovia, R. Irles, "Tridimensional Modelization of the Impact of a Vehicle against a Metallic Parking Column at a Low Speed," Engineering Structures, Vol. 32, Issue. 8, 2010, pp. 1986-1992. (doi: http://dx.doi.org/10.1016/j.engstruct.2010.02.032)