DOI QR코드

DOI QR Code

Uncertainty Analysis of Long-Term Behavior of Reinforced Concrete Members Under Axial Load

축력을 받는 철근콘크리트조 부재 장기거동 예측의 불확실성 분석

  • Received : 2014.03.15
  • Accepted : 2014.06.17
  • Published : 2014.06.30

Abstract

A probabilistic construction stage analysis using the Monte Carlo Simulation was performed to address the effects of uncertainty regarding the material properties, environmental factors, and applied forces. In the previous research, creep and shrinkage were assumed to be completely independent random variables. However, because of the common influencing factors in the material models for the creep and shrinkage estimation, strong correlation between creep and shrinkage can be presumed. In this paper, an Monte Carlo Simulation using CEB-FIB creep and shrinkage equations were performed to actually evaluate the correlation coefficient between two phenomena, and then another Monte Carlo Simulation to evaluate the statistical properties of axial strain affected by partially correlated random variables including the material properties, environmental factors, and applied forces. The results of Monte Carlo Simulation were compared with measured strains of a column on a first story in a 58-story building. Comparison indicated that the variation due to the uncertainty related with the material properties were most severe. And measured strains was within the range of mean+standard deviation.

이 연구에서 몬테카를로 시뮬레이션을 이용해 확률론적 시공단계해석을 수행한 이유는 재료 특성, 환경 요인 및 하중에 대한 불확실성의 영향을 고려하기 위해서이다. 지금까지의 연구에서는 크리프 및 건조수축이 완전히 독립적인 확률 변수라고 가정되었다. 그러나 크리프 및 건조수축 추정을 위한 재료모델의 공통적인 영향요인 때문에 크리프 및 건조수축 사이에 강한 상관관계를 추정 할 수 있다. 이 논문에서는 CEB-FIB모델의 크리프 및 건조수축식을 이용하여 몬테카를로 시뮬레이션을 수행하여 실제 두 현상 사이의 상관 계수를 평가 한 후 재료 특성, 환경 요인 및 하중의 확률 변수의 영향을 받는 축방향 변형의 통계적 특성을 평가하기위해 몬테카를로 시뮬레이션을 한번 더 사용하였다. 몬테카를로 시뮬레이션의 결과는 58층 건물의 첫 번째 층의 기둥의 변형률과 비교 했다. 비교 결과는 재료특성에 불확실성에 의한 변화가 가장 큰 것으로 나타났다. 측정된 변형률은 평균+표준 편차 범위 안에 있었다.

Keywords

References

  1. Elnimeiri, M. M. and Joglekar, M. R., "Influence of Column Shortening in Reinforced Concrete and Composite High-Rise Structures," ACI Special Publication, ACI, 1989, 117 pp. (doi: http://dx.doi.org/10.14359/3318)
  2. Henrik, M. and Bazant, Z. P., "Uncertainty Analysis of Creep and Shrinkage Effects in Concrete Structures," ACI Journal, Vol. 80, No. 2, 1983, pp. 116-127. (doi: http://dx.doi.org/10.14359/10467)
  3. Gardner, N. J., "Comparison of Prediction Provisions for Drying Shrinkage and Creep of Normal-Strength Concretes," Canadian Journal of Civil Engineering, Vol. 31, No. 5, 2004, pp. 767-775. (doi: http://dx.doi.org/10.1139/l04-046)
  4. Kang, K. S., Gu, M. S., and Yu, E. J., "Probabilistic Construction Stage Analysis of Building Structures Considering the Variations of Material Properties," Journal of the Architectural Institute of Korea : Structure & Construction, Vol. 27, No. 11, 2011, pp. 37-44.
  5. Song, H. C., Yu, E. J., Jeong, S. C., Ju, Y. K., and Park, C. L., "Influence of Column Shortening in Tall Concrete Buildings," Journal of the Architectural Institute of Korea, Vol. 13, No. 12, 1997, pp. 289-297.
  6. Keitel, H., "Quantifying Sources of Uncertainty for Creep Models under Varying Stresses," Journal of Structural Engineering, Vol. 139, No. 6, 2013, pp. 949-956. (doi: http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000716)
  7. Yang, I. H., "Uncertainty and Sensitivity Analysis of Time-Dependent Effects in Concrete Structures," Engineering Structures, Vol. 29, No. 7, 2007, pp. 1366-1374. (doi: http://dx.doi.org/10.1016/j.engstruct.2006.07.015)
  8. Keitel, H. and Andrea, D. O., "Uncertainty and Sensitivity Analysis of Creep Models for Uncorrelated and Correlated Input Parameters," Engineering Structures, Vol. 32, No. 11, 2010, pp. 3758-3767. (doi: http://dx.doi.org/10.1016/j.engstruct.2010.08.020)
  9. Gilbert, R. I., Time Effects in Concrete Structures, Developments in Civil Engineering, 1988.
  10. Yoo, J. W. and Yu, E. J., "Aging Coefficient Formula of Reinforced Concrete Members under Axial Compression," Journal of the Korean Association for Spatial Structures, Vol. 13, No. 4, 2013, pp. 67-74. (doi: http://dx.doi.org/10.9712/KASS.2013.13.4.067)
  11. Bazant, Z. P., "Prediction of Concrete Creep Effects Using Age-Adjusted Effective Modulus Method," ACI Journal, Vol. 69, No. 4, 1972, pp. 212-217. (doi: http://dx.doi.org/10.14359/11265)
  12. Neville, A. M., Walter H. D., and Jeffery J. B., Creep of Plain and Structural Concrete, London and New York: Construction Press, 1983.
  13. CEB-FIP, M. C., 90 Design of Concrete Structures. CEB-FIP-Model-Code 1990, British Standard Institution, London, UK, 1993.
  14. Jang, S. W., Song H. C., and Sho K. H., "Column Shortening Prediction of Concrete Filled Tubes using Monte Carlo Method," Journal of the Korean Association for Spatial Structures, Vol. 10, No. 1, 2010, pp. 75-84.
  15. Ghali, A, R. F. and Mamdouh, E., Concrete Structures: Stresses and Deformations: Analysis and Design for Serviceability, Taylor & Francis, 2002.
  16. Park, J. S. and Hwang, H. S., "Comparison and Distance Calculation Between Two Latin-hypercube Designs," The Korean Journal of Applied Statistics, Vol. 13, No. 2, 2000, pp. 477-488.