DOI QR코드

DOI QR Code

Study on Analysis Technique Comparison and Evaluation of High Thermal Conductivity Concrete with Magnetite Aggregates and Steel Powder

자철광 및 철분말을 혼입한 고열전도 콘크리트의 열전도 평가 및 해석기법 비교에 대한 연구

  • 이학수 (한남대학교 건설시스템공학과) ;
  • 김민규 (원자력안전연구원) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2014.02.12
  • Accepted : 2014.03.28
  • Published : 2014.06.30

Abstract

Concrete as a construction material is widely used in nuclear vessel and plant for excellent radiation shielding. However the isolation characteristics in concrete may affect adversely in the case of fire and melt-down in nuclear vessel since temperature cooling down is very difficult from outside. This study is for development of high thermal conductive concrete, and its mechanical and thermal properties are evaluated. Magnetite aggregates with volume ratio of 42.3% (maximum) and steel powder of 1.5% are replaced with normal aggregates and thermal properties are evaluated. Thermal conductivity little increases by 30% addition of magnetite but rapidly increases afterwards. Finally thermal conductivity is magnified to 2.5 times in the case of 42.3% addition of magnetite. Steel powder has a positive effect on high thermal conduction to 106~113%. Several models for thermal conduction like ACI, DEMM, and MEM are compared with test results and they are verified to reasonably predict the thermal conductivity with increasing addition of magnetite aggregates and steel powder.

콘크리트는 경제적이면서 내구적인 건설재료로서 고단열성능을 가지고 있으므로 RC 구조물 뿐 아니라 내외장재에 많이 사용되고 있다. 또한 우수한 방사선 차폐 성능을 가지고 있으므로 원전구조물 및 플랜트 구조에 사용되고 있다. 그러나 이러한 고단열 성능으로 인해 내부에 원전구조물 내부에 화재나 멜트다운(melt-down)과 같은 문제가 발생하면 외부에서 인공적으로 온도를 낮출 방법이 매우 제한적이다. 이 연구는 자철광 골재와 철분말을 이용하여 고열전도 콘크리트를 제조하고 이에 대한 역학적 성능과 열전도 특성을 평가하였다. 자철광 골재를 체적비 최대 42.9%, 철분말을 1.5% 혼입하여 열전도 특성을 분석하였다. 자철광골재의 체적비가 30% 수준까지는 큰 열전도가 평가되지 않았으나, 이후 선형적으로 증가하여 체적비 42%가 되었을 때, 열전도는 2.5배 수준으로 증가하였다. 또한 철분말을 포함한 경우는 포함하지 않은 경우에 비해 열전도가 106~113% 증가하였다. 기존의 열전도 모델(ACI, DEMM, MEM)의 결과들이 실험 결과와 비교되었으며, 이러한 모델들은 자철광 및 철분말이 함유된 고열전도 콘크리트에 대해서도 합리적으로 적용될 수 있음을 검증하였다.

Keywords

References

  1. Broomfield, J. P., Corrosion of Steel in Concrete: Understanding, Investigation and Repair, London: E&FN, 1997, pp. 1-15.
  2. Thomas, M. D. A. and Bamforth, P. B., "Modeling Cchloride Diffusion in Concrete: Effect of Fly Ash and Slag," Cement and Concrete Research, Vol. 29, No. 4, 1999, pp. 487-495. (doi: http://dx.doi.org/10.1016/S0008-8846(98)00192-6)
  3. Ishida, T. and Maekawa, K., "Modeling of PH Profile in Pore Water Based on Mass Transport and Chemical Equilibrium Theory," Concrete Library of JSCE, Vol. 37, No. 1, 2001, pp. 151-166. (http://concrete.t.u-tokyo.ac.jp/en/demos/ducom/brieftheory/Clib_JSCE_pH.pdf)
  4. Song, H. W., Kwon, S. J., Byun, K. J., and Park, C. K., "Predicting Carbonation in Early-Aged Cracked Concrete," Cement and Concrete Research, Vol. 36, No. 5, 2006, pp. 979-989. (dod: http://dx.doi.org/10.1016/j.cemconres.2005.12.019)
  5. Yang, K. H. and Moon, J, H., "Mix Proportions and Physical Properties of Heavy Weight Concrete for Nuclear Power Plant," The Korea Institute of Building Construction, Vol. 12, No. 3, 2012, pp. 9-14, (in Korean).
  6. Spicer, J. W. M., Osiander, R., Aamodt, L. C., and Givens, R. B., "Microwave Thermoreflectometry for Detection of Rebar Corrosion," Structural Materials Technology III: An NDT Conference, San Antonio, TX, SPIE, pp. 402-409.
  7. Kim, K. H., Jeon, S. E., Kim, J. K., and Yang, S. C., "An Experimental Study on Thermal Conductivity of Concrete," Cement and Concrete Research, Vol. 33, No. 2, pp. 363-371. (doi: http://dx.doi.org/10.1016/S0008-8846(02)00965-1)
  8. Lanciani, A., Morabito, P., and Rossi, P., Measurement of the Thermophysical Properties of Structural Materials in Laboratory and in Site: Methods and Instrumentation, High Temp. High Press.21, 1989, pp. 391-400.
  9. ACI 122R-02, Guide to Thermal Properties of Concrete and Masonry System, ACI Committee 122, 2002, pp. 1-21.
  10. Lee, J. K. and Kim, J. G., "Analytical Study on Effective Thermal Conductivity of Three-Phase Composites," Journal of the Korea Academia-Industrial cooperation Society, Vol. 12, No. 7, 2011, pp. 2931-2938 (in Korean). https://doi.org/10.5762/KAIS.2011.12.7.2931
  11. Kim, J. J., Han, M. C., and Han, C. G., "Fundamental Research on Corrosion Control for Reinforcing Bar by Incorporation of Steel Powder," Conference of AIL-RA, Vol. 1, No. 1, 2007, pp. 792-795 (in Korean).
  12. Manahan, M. P., "Thermal Expansion and Conductivity of Magnetite Flakes Taken form the Oconee-2 Steam Generator," Journal of Materials Science, Vol. 25, No. 3, 1990, pp. 3424-3428. https://doi.org/10.1007/BF00575366
  13. Jeon, S. E., "An Experimental Research on Thermal Properties of Concrete," MS thesis, Department of Civil Engineering in Korea Advanced Institute of Science and Technology, 1997, pp. 3-48.
  14. Mutnuri, B., "Thermal Conductivity Characterization of Composite Materials," MS Thesis, College of Engineering and Mineral Resources, West Virginia University, 2006, pp. 14-28.
  15. Molina, J. M., Prieto, R., Narciso, J., and Louis, E., "The Effect of Porosity on the Thermal Conductivity of Al-12 wt.% Si/SiC Composites," Scripta Materialia, Vol. 60, No. 2, 2009, pp. 582-585. (doi: http://dx.doi.org/10.1016/j.scri ptamat.2008.12.015)