DOI QR코드

DOI QR Code

An Experimental Study on Flexural Behavior of Beams Reinforced with Zinc-Coated Rebar

아연코팅 철근콘크리트 보의 휨 거동 실험 연구

  • Received : 2014.01.28
  • Accepted : 2014.05.15
  • Published : 2014.06.30

Abstract

Coating is one of the methods used to solve the problem of corrosion of reinforcement in concrete structures. There are few research reported in the literature regarding the effect of zinc-coating on flexural behavior compared to epoxy coating. The objective of this study was to determine whether zinc-coated rebar adversely affects flexural behavior. Concrete beams reinforced with black or zinc-coated steel were tested in flexure. The test variables included the presence of rebar surface coating with zinc, steel ratio used and cover depth. The study concentrated on comparing crack pattern, crack width, deflection and strain. The ultimate flexural capacity of beams reinforced with zinc-coated bars was not different from that of black steel reinforced beams. The results from deflection and crack width measurements were indicative of no significant variation for the different rebar surface conditions. In addition, it was found that load-strain curve of beam reinforced with zinc-coated steel was similar to that of beam reinforced with zinc-coated steel. Therefore, the test results indicated that the use of zinc-coated rebar had no adverse effect on flexural behavior compared to the use of black rebar.

콘크리트 구조물의 철근 부식 문제를 해결하기 위하여 코팅철근이 사용된다. 에폭시 코팅 철근에 비해 아연코팅철근의 콘크리트 보의 휨 거동 영향에 대한 자료는 거의 없는 실정이다. 이 연구의 목적은 아연코팅철근이 콘크리트 보의 휨 거동에 미치는 영향을 파악하는 데 있다. 아연코팅철근을 사용한 부재와 일반철근을 사용한 부재의 구조실험을 통하여 휨 거동 특성을 비교하였다. 실험변수로써 철근의 아연코팅 유무, 사용 철근비와 피복 두께를 고려하였다. 아연코팅철근 콘크리트 보의 균열패턴, 균열폭, 처짐 및 변형률 특성을 파악하였다. 아연코팅철근 콘크리트 보의 휨강도는 일반철근 콘크리트 보의 휨강도와 거의 차이가 나지 않는다. 철근표면의 아연코팅은 처짐, 균열폭 비교 결과에도 뚜렷한 영향을 미치지 않는다. 또한, 아연코팅철근 보와 일반철근 보의 하중-변형률 곡선은 비슷한 결과를 나타낸다. 따라서, 전반적으로 아연코팅철근의 사용은 일반철근을 사용할 때에 비해 콘크리트 보의 휨 거동에 악영향을 미치지는 않는 것으로 나타난다.

Keywords

References

  1. Dong, S. G., Zhao, B., Lin, C. J., Du, R. G., Hu, R. G., and Zhang, G. X., "Corrosion Behavior of Epoxy/Zinc Duplex Coated Rebar Embedded in Concrete in Ocean Environment," Construction and Building Materials, Vol. 28, No. 1, 2012, pp. 72-78. https://doi.org/10.1016/j.conbuildmat.2011.08.026
  2. Cook, A. R. and Ranke, S. F., Chloride Corrosion of Steel in Concrete, ASTM-STP 629, American Society for Testing Materials, Philadelphia, 1977, pp. 51-60.
  3. Maahn, E. and Sorensen, B., "Influence of Microstructure on the Corrosion Properties of Hot-Dip Galvanized Reinforcement in Concrete," Corrosion-NACE, Vol. 42, No. 4, 1986, pp. 187-196. https://doi.org/10.5006/1.3585996
  4. Choi, O. C., Hadje-Ghaffari, H., Darwin, D., and McCabe, S. L. "Bond of Epoxy-Coated Reinforcement Bar Parameters," ACI Materials Journal, Vol. 88, No. 2, 1990, pp. 207-217.
  5. Jalili, M. M., Moradian, S., and Hosseinpour, D., "The Use of Inorganic Conversion Coatings to Enhance the Corrosion Resistance of Reinforcement and the Bond Strength at the Rebar/Concrete," Construction and Building Materials, Vol. 28, No. 1, 2012, pp. 72-78. https://doi.org/10.1016/j.conbuildmat.2011.08.026
  6. Hadje-Ghaffari, H., Choi, O. C., Darwin, D., and McCabe, S. L., "Bond of Epoxy-Coated Reinforcement: Cover, Casting Position, Slump, and Consolidation," ACI Structural Journal, Vol. 91, No. 1, 1994, pp. 59-68.
  7. Idun, E. K. and Darwin, D., "Bond of Epoxy-Coated Reinforcement: Coefficient of Friction and Rib Face Angle," ACI Structural Journal, Vol. 96, No.4, 1999, pp. 609-615.
  8. Cairns, J. and Abdullah, R. B., "Bond Strength of Black and Epoxy-Coated Reinforcement- A Theoretical Approach," ACI Materials Journal, Vol. 93, No. 4, 1996, pp. 362-369.
  9. Kayali, O. and Yeomans, S. R., "Bond of Ribbed Galvanized Reinforcing Steel in Concrete," Cement & Concrete Composites, Vol. 22, No. 6, 2000, pp. 459-467. https://doi.org/10.1016/S0958-9465(00)00049-4
  10. Cheng, A., Huang, R., Wu, J. K., and Chen, C. H., "Effect of Rebar Coating on Corrosion Resistance and Bond Strength of Reinforced Concrete," Construction and Building Materials, Vol. 19, No. 5, 2005, pp. 404-412. https://doi.org/10.1016/j.conbuildmat.2004.07.006
  11. Manna, M, Bandyopadhyay, N., and Bhattacharjee, D., "Effect of Plating Time for Electroless Nickel Coating on Rebar Surface: An Option for Application in Concrete Structure," Surface & Coating Technology, Vol. 202, No. 14, 2008, pp. 3227-3232. https://doi.org/10.1016/j.surfcoat.2007.11.039
  12. Selvaraj, R., Selvaraj, M., and Iyer, S. V. K., "Studies on the Evaluation of the Performance of Organic Coatings Used for the Prevention of Corrosion of Steel Rebars in Concrete Structures," Progress in Organic Coatings, Vol. 64, No. 4, 2009, pp. 454-459. https://doi.org/10.1016/j.porgcoat.2008.08.005
  13. Wu, C., Chen, G., Volz, J. S., Brow, R. K., and Koenistein, M. L., "Global Bond Behavior of Enamel-Coated Rebar in Concrete Beams with Spliced Reinforcement," Construction and Building Materials, Vol. 40, 2013, pp. 793-801. https://doi.org/10.1016/j.conbuildmat.2012.11.076
  14. Kwon,. S. J., Lee, S. M., Lee, M. H., and Park, S. S., "Study on Corrosion and Structural Performance in Hot-Dip Galvanizing Steel," Journal of the Korea Concrete Institute, Vol. 24, No. 5, 2012, pp. 613-621. https://doi.org/10.4334/JKCI.2012.24.5.613
  15. Ramirez, E., Gonzalez, J. A., and Bautista, A., "The Protective Efficiency of Galvanizing against Corrosion of Steel in Mortar and in $Ca(OH)_2$ Saturated Solutions Containing Chlorides," Cement and Concrete Research, Vol. 26, No. 10, 1996, pp. 1525-1536. https://doi.org/10.1016/0008-8846(96)00150-0
  16. Gonzalez, J. A. and Andrade, C., "Effect of Carbonation, Chlorides and Relative Ambient Humidity on The Corrosion of Galvanized Rebars Embedded in Concrete," British Corrosion Journal, Vol. 17, No. 21, 1982, pp. 21-28. https://doi.org/10.1179/000705982798274589
  17. Hamad, B. S. and Mike, J. A. "Bond Strength of Hot-Dip Galvanized Reinforcement in Normal Strength Concrete Structures," Construction and Building Materials, Vol. 19, No. 4, 2005, pp. 275-283. https://doi.org/10.1016/j.conbuildmat.2004.07.008

Cited by

  1. Flexural Capacity of RC Composited H-Pile vol.28, pp.5, 2016, https://doi.org/10.4334/JKCI.2016.28.5.563
  2. Study on the Bending Performance of Composite H-Shaped Piles vol.47, pp.5, 2019, https://doi.org/10.1520/JTE20170547