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Abstract
Schema matching is widely used in many applications, such as data integration, ontology merging, data warehouse and

dataspaces. In this paper, we propose a novel matching technique that is based on the order of attributes appearing in the

schema structure of query results. The appearance order embodies the extent of the importance of an attribute for the user

examining the query results. The core idea of our approach is to collect statistics about the appearance order of attributes

from the query logs, to find correspondences between attributes in the schemas to be matched. As a first step, we employ

a matrix to structure the statistics around the appearance order of attributes. Then, two scoring functions are considered

to measure the similarity of the collected statistics. Finally, a traditional algorithm is employed to find the mapping with

the highest score. Furthermore, our approach can be seen as a complementary member to the family of the existing

matchers, and can also be combined with them to obtain more accurate results. We validate our approach with an experi-

mental study, the results of which demonstrate that our approach is effective, and has good performance.
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I. INTRODUCTION

Schema matching plays an important role in the realm

of data integration, which is a solution for sharing multi-

ple heterogeneous data sources through a unified access

interface. In essence, the schema matching problem refers

to the problem of finding semantic correspondences, also

called matches, between elements of the source schema,

and elements of the target schema. A match means that

its two elements hold the same meaning, or refer to the

same object. The match is very significant for creating a

unified mediated schema over multiple source schemas,

exchanging data from one schema to another schema, and

sharing data in a similar domain. The schemas to be

matched are typically designed by different developers,

who have different habits and experiences, so the sche-

mas often have diverse structures and representations,

and this makes schema matching difficult. In addition,

dozens of tables and thousands of attributes in the sche-

mas also increase the difficulty of schema matching.
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Even with the availability of some domain expertise, the

task of schema matching may not be easy.

Much attention has been paid to schema matching, and

a multitude of techniques, also called matchers, have been

proposed, e.g., [1-5]. However, these existing matchers

are not infallible, because no matcher is perfect and returns

matches with 100% accuracy. Consequently, additional

efforts are required for schema matching. In this paper,

we proposed a novel matching technique that exploits the

order of attributes appearing in the schema structure of

query results, to discover the matches between the

attributes of the source schema, and the attributes of the

target schema. As is well known, the words in almost

every book we can read in English, are arranged from left

to right, and this is a habit of people, to capture informa-

tion from left to right. For example, given a spreadsheet

listing records about books, people will always start from

the first column to read, then the second column, etc. The

departure times in the grid of train schedules are typically

arranged at a position closer to the left side with respect

to arrival times. The field ‘name’ will be arranged at the

left side of the field ‘nationality’ in the database table

‘student’. Examples like this are numerous. In a sense,

the reading habit can be viewed as a preference of read-

ers. As a result, the developers of applications for struc-

tured information always design the schema structure

according to this habit. That is, the more important col-

umns will be arranged in positions closer to the left side.

For example, the column ‘bookname’ in the above

spreadsheet may appear on the left-hand side of the col-

umn ‘author’; as such, the column ‘student name’ will be

arranged on the left side of the column ‘gender’ in the

student table. It is reasonable that the important informa-

tion is the first received by readers. The arrangement of

these columns not only embodies the reading habit, but

also the default rule of some industries. We browse five

digital libraries, and pose the same query to their respec-

tive databases, then present the schema structures of their

returned results about books in Fig. 1. Surprisingly, all

these libraries arrange the attributes of the book in almost

the same order. It is easy to see that the attributes close to

the left side are arranged according to reading habit.

However, the extent of importance among the attributes

close to the right side is almost the same, but they also

have a similar order. The reason for this behavior is that

these libraries fall into the same industry, where there

exist some default rules. Consequently, we are able to

exploit these habits, which are typically conformed to by

both schemas to be matched, to find matches.

As is clear from the discussion above, different attributes

have different importance in structuring the query results

to be shown to the final users. As a result, an attribute

with different importance will hold its own position in the

schema structure of the query results. Actually, the

appearance order of attributes refers to the positions of

attributes appearing in the schema structure. It is normal

that the positions of an attribute in some query results are

likely to differ slightly, because of lack of generality.

However, positions of an attribute in numerous query

results will reflect the reading habit (designing method of

developers), which we talk about. Thus, the statistics

about the appearance order of an attribute in a large num-

ber of query results can be seen as its identification, dif-

fering from other attributes. Every query result corresponds

to one query statement in the query log. Consequently, to

collect statistics about attributes, we will start with the

query logs. The core idea of our approach is to collect the

statistics about the appearance order of attributes from

the query logs, to find correspondences between attributes

in the schemas to be matched. Our approach works in

three phases. In the first phase, the query log of each

schema is scanned, to collect the statistics about the

appearance order. Three kinds of usual but typical query

statements are considered in our approach. We design

two types of matrices to structure the statistics, and call

them feature matrices. One is used to record the informa-

tion about the position of attributes, while the other is

used to record the information about the number of

attributes that are behind the current attribute. We show

the difference in the effects on accuracy between the two

types of matrices in our experiments. In the second phase,

we consider three types of cardinality constraints for the

mappings, which are one-to-one mapping, onto mapping,

and partial mapping. Then, two scoring functions are

Fig. 1. Schema structure of query results from five digital libraries A-E.
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considered, to measure the similarities of feature matrices

of the schemas to be matched, with respect to the three

types of constraints. The task of the last phase is to

employ a traditional searching method, to find the attribute

mapping with the highest score. Our approach can be

seen as a complementary member to the family of exist-

ing matchers, and can also be combined with them to

achieve more accurate match results. This paper makes

the following contributions:

1) We exploit the statistics about the appearance order

of attributes in the schema structure of the query

results to find matches.

2) Two types of feature matrices are employed to col-

lect statistics about the appearance order of the

attributes from the query logs.

3) Two scoring functions are considered, to measure

the similarities of the feature matrices of the sche-

mas to be matched.

4) We perform an extensive experimental study, the

results of which show that the proposed algorithm

has good performance.

The rest of this paper is organized as follows. Section

II introduces the feature matrices. The scoring functions

and the traditional searching algorithm are discussed in

Section III. The extensive experimental results are given

in Section IV. Related work is briefly reviewed in Section

V. Finally, we conclude our work in Section VI.

II. FEATURE MATRICES

In this section, we describe the main work of our first

phase. Given two schemas to be matched, our main task

is to scan the query log of each schema, to collect the sta-

tistics about the appearance order of attributes. Then, two

types of matrices are designed to structure the statistics

collected from the query log.

As our motivation shows, the appearance order of an

attribute in the schema structure of query results can be

seen as its identification, differing from other attributes in

the same schema. Hence, we use the feature about the

position of the attribute to discover the matches. It is

obvious that the position information of an attribute in

one or several query results is not representative. Since

each query result corresponds to one query statement, we

collect the statistics about the position of the attribute

from the query logs, which include plenty of queries. It is

easy to think that just the clauses with the type ‘select’ in

the query log need to be considered, because the attributes

in other types of clauses do not appear in the query

results. However, just scanning the ‘select’ clause itself is

slightly incomplete. Consider the following example. For

a developer who is designing the query interface of a

website selling mobile phones, it is natural to dispose the

query condition ‘brand’ ahead the condition ‘price’. As a

result, if a user wants to find the phones with brand

‘Nokia’ and price under 3000 RMB, the website is more

likely to produce a corresponding query with the ‘where’

clause ‘brand = Nokia and price <= 3000’, rather than

‘price <= 3000 and brand = Nokia’. If this scenario hap-

pens in another website that also sells mobile phones, we

may obtain the same ‘where’ clause, because of people

often thinking in much the same way. We can see that the

positions of attributes in the ‘where’ clause can also iden-

tify these attributes to some extent. As a result, we con-

sider 4 types of clauses ‘select’, ‘where’, ‘group’, and

‘order’ during the process of scanning the query log. In

addition to the types of the clauses, we need to consider

the types of queries. The reason is that there may exist

queries with low frequency, which are unrepresentative.

As in [5], the following three types of queries are consid-

ered in our approach:
●SPJ: Single-block queries with Select, Project, Join

and optional ‘group’ and/or ‘order’ clause. These

queries are simple and very common in the query

logs. Many queries posted by users and developers

fall into this type of query.
●SPJU: Multiple SPJ queries connected by the set

operator ‘union’, but except ‘intersect’. These queries

are usually used to combine results from different

tables.
●SPJS: SPJ queries with nested subqueries falling into

one of the three types. In actual applications, a com-

plicated search task is usually completed by this type

of query.

For SPJ queries, it is a common process that involves

creating the appearance sequences in DEFINITION 1

below, then checking the position of each attribute in the

appearance sequences, and finally updating the corre-

sponding entries in the matrix. For the SPJU and the

SPJS queries, they are decomposed into separate subque-

ries, each of which can be seen as a single-block SPJ

query. Then, the process for SPJU and the SPJS queries is

the same as the SPJ query. Next, we will show the defini-

tion of the appearance sequence.

DEFINITION 1. Let ‘select a1, …, an1 from <table

reference> [where b1, …, bn2] [group by c1, …, cn3] [order

by d1, …, dn4]’ be a query statement. Then, we call the

sequence a1… an1[b1…bn2][c1…cn3] [d1…dn4] appearance

sequence.

Based on the definition above, we can see that each

query corresponds to an appearance sequence that

embodies the reading habit of people, and the default

rules of some industry, as mentioned in Section I. Now,

the first task of our approach is turned into collecting the

statistics about the positions of attributes in the appear-

ance sequence. First of all, each query in the query log

including only three types of queries (SPJ, SPJU, SPJS)

is scanned, to produce an appearance sequence. The posi-
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tion of each attribute in an appearance sequence is

recorded in a matrix. The row of the matrix represents all

the attributes in one schema, while the column represents

the positions from 1, to the maximum of the number of

elements in all the appearance sequences. An entry of the

matrix represents the number of some attribute appearing

in some position in all the appearance sequences. This is

our first type of matrix, and we call it a p-matrix. Before

scanning the query log, all the entries in the p-matrix are

initialized with the value 0. If an attribute appears in

some position, the value of the corresponding entry in the

p-matrix is incremented by one. After scanning all the

queries in the query log, the entries in the p-matrix are

normalized, by dividing each of them by the largest num-

ber of all entry numbers. After this normalization step,

the p-matrix is independent of the size of the query log.

To understand the p-matrix intuitively, an example with

dummy statistics and six dummy attributes a – e is shown

in the left-hand panel of Fig. 2, while the normalized one

is shown in the other side.

Consider two appearance sequences, S1 = a1a2a3a4a5
and S2 = b1b2. Although the two attributes a1 and b1 are

both in first position, we believe that a1 is greater than b1
in terms of the importance of structuring the query results

to be shown to the final users. This is because a1 ranks

prior to four attributes in its sequence, however, b1 ranks

prior to only one attribute. As a result, it is not reasonable

that attribute a1 is matched to attribute b1, with respect to

the importance of attributes in the sequence. We can see

that just the statistics about the positions of attributes in

the sequence are not enough to discover the matches. As

a result, we make a minor change to the original matrix,

to collect the information about the number of attributes

that rank after a given attribute in the appearance sequence.

The changed matrix is called an n-matrix, which is our

second type of matrix. Actually, the n-matrix is similar to

the p-matrix, and they have the same columns and same

rows. The difference between them is that each time the

value of the corresponding entry for an attribute e

increases, the increment is not the value 1, but rather the

number of the attributes that rank after e in the appear-

ance sequence. Except the information about the posi-

tions of attributes, the n-matrix captures a little more

information than the p-matrix, and their performance is

tested and compared in our experiment. The advantage of

the n-matrix is that it considers not only the absolute

positions of attributes, but also their relative positions,

and this makes the importance of attributes in the

sequences more general. Now, given two schemas to be

matched, we can obtain two corresponding matrices. The

two matrices can be seen as the respective feature of

attributes in the two schemas. Thus, our task of matching

attributes is transformed into measuring the similarity of

the two matrices. In the next section, two scoring func-

tions are introduced for the measurement of the similarity

of the two matrices.

III. SCORING FUNCTIONS AND SEARCH
ALGORITHM

In this section, our discussion is divided into two parts.

Two scoring functions are discussed in the first subsec-

tion, while the search algorithm is discussed in the sec-

ond subsection.

A. Scoring Functions

Before the main discussion, we introduce several types

of cardinality constraints in schema matching, which are

the prerequisite of the scoring functions. The cardinality

constraint is an important feature of the ER-diagram in

the database. The constraints usually state instructions of

the form “every person has exactly one mother”, or

“every course must have at least one teacher”. They are

very useful, because they allow the logical integrity of

the database to be maintained. The cardinality constraints

in schema matching are similar to the one in the database.

Given two sets of attributes, the cardinality constraints

state how many attributes in one set should hold corre-

spondences with attributes in the other set. Thus, given a

mapping, these constraints play an important role in the

behavior of a scoring function. We will analyze the effect

of these constraints on the scoring function in detail, in

Fig. 2. An Example of p-matrix.
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the remainder of this section. In our approach, we con-

sider three types of cardinality constraints: one-to-one

mapping, onto mapping, and partial mapping, which are

first proposed in [2]. For two input schemas S1 and S2 to

be matched, the three types of cardinality constraints are

described as follows:

1) One-to-one mapping: For each attribute in S1, there

exists one and only one corresponding attribute as

the counterpart in S2, and vice versa. If the two sche-

mas S1 and S2 are referred to as two sets and the

mapping is referred to as a function, we can see that

this function is the so-called bijective mapping in

discrete mathematics, i.e., it is both surjection and

incidence.

2) Onto mapping: For each attribute in S1, there exists

a unique attribute in S2 as a match. Conversely, each

attribute in S2 either has one and only one attribute

in S1 as a match, or remains unmatched. Compared

to the one-to-one mapping, this mapping actually

falls into the class of incidence.

3) Partial mapping: Each attribute in S1 either has one

and only one attribute in S2 as a match, or remains

unmatched, and vice versa. In practice, this case is

the most general and difficult one. The reason is that

for an attribute in one schema, the existence of its

match (counterpart) in another schema is unknown

(uncertain); for a schema, the number of its attributes

that have matches in another schema is unknown.

These three types of cardinality constraints are very

prevalent in practice, as opposed to the case where an

attribute in one schema has multiple matches in another

schema, so in the proposed approach we do not consider

this kind of cardinality constraint.

In essence, a scoring function is a function that takes

some parameters of some entity, or some quantitative fea-

tures of some model or some procedure as input, and then

outputs a final numeric value (score), as a measurement

of inputs. It is also a mapping from a set of parameters to

a final numeric value. It is a computation rule, which

embodies some measurements about what is good or bad,

between inputs and the final score. The computation rule

is the important component of the scoring function,

because a set of appropriate rules is the key to obtaining

an accurate final score. The problem of how to create an

effective scoring function to evaluate the quality of

matching has been discussed in [2]. They proposed two

scoring functions, and addressed the problem of the

monotonicity of scoring functions. They classified their

scoring functions into monotonic and non-monotonic.

Given the mapping, we exploit their scoring functions as

the measurement of similarity of feature matrices in our

approach. As in [5], we introduce some formal descrip-

tions about schema matching. Let S1 and S2 be two sche-

mas to be matched. Given their respective feature matrices,

the matching task is to find the optimal mapping  that

gives the highest score for a specific scoring function.

Consequently, any mapping m should provide three kinds

of information for the scoring function. The first is the

number of matches (matched attributes) included in m,

denoted as km; the second is the attributes occurring in m,

denoted as {a1, ..., ai, ..., akm} for S1 and {b1, ..., bj, ..., bkm}

for S2; and the third is the actual correspondences

between attributes of S1 and S2, i.e., m(ai) = bj (m(i) = j).

Here, it should be noted that km is the number of matches

in m, rather than the number of correct matches in m. For

two feature matrices, they are required to have the same

number of rows and columns for the computation of sim-

ilarity. Thus, if the number of their rows and columns is

not equal, additional rows and columns with values 0 are

added to the end of the corresponding matrix. Now, we

present the definition of the monotonic scoring function.

DEFINITION 2. Let P1 and P2 be the two feature matri-

ces collected from the query logs of schema S1 and S2,

respectively, and n be the number of the rows of P1 and

P2. Let aij be an entry in P1, which represents the statistics

about attribute ai appearing in position j, while bij is an

entry in P2, which represents the statistics about attribute

bi appearing in position j. Given a mapping m, the mono-

tonic scoring function is defined as:

(1)

Given the mapping m, this scoring function employs

the Euclidean distance metric to measure the similarity

between two feature matrices. Let dm(P1, P2) be the

Euclidean distance above, i.e., the square root item. We

can see that dm(P1, P2) increases monotonically with the

increase of the number of matches in m; that is, this func-

tion is monotonic in km. For example, let m1 = (a1, b1), m2

= (a1a2, b1b2) be two mappings. If n is set to 2, then

dm1(P1, P2) is (a1 – b1)
2, and dm2(P1, P2) is (a1 – b1)

2 + (a2 –

b2)
2. As a result, dm2 is equal to or greater than dm1,

because of (a2 – b2)
2 ≥ 0; that is, the score decreases

monotonically with the increase of km. Given two sche-

mas to be matched, if the correct km is unknown, the

matching algorithm using this function will just return the

mapping with only one match as , because the score of

any mapping with more than one match will be smaller

than the one with only one match. As a result, this func-

tion can be used to achieve the one-to-one mapping and

the onto mapping problems where the km is known, and as

the input of search algorithms, rather than the partial

mapping problem. The variable ub takes the value

 that is the upper bound to the value of dm(P1, P2);

and this guarantees that the value of the function is posi-

tive. In the following, we will discuss the non-monotonic

scoring function.

DEFINITION 3. Let P1 and P2 be the two feature matri-

ces with n rows. Let aij be an entry in P1, which representsm̂

fe m( ) 1 1
ub
------  

km

i=1
aij bm i( )j–( )n 2

j=1∑∑–=

m̂

km* n
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the statistics about attribute ai appearing in position j,

while bij is an entry in P2, which represents the statistics

about attribute bi appearing in position j. Given a map-

ping m, the non-monotonic scoring function is defined as:

(2)

This is a non-monotonic scoring function; that is, there

is no monotonic relation between the score and the num-

ber km of matches in the mapping. Now, we will analyze

the principle of this scoring function. The item multiplied

by α in the equation above is the normal distance [2].

Suppose that, if the statistics values about the position of

attributes are uniformly distributed, and two of them are

randomly chosen from the matrices, the expected value

of normal distance is β (around 1/3). As a result, if the

control parameter α is set to 1/β (around 3), the expected

score of this function becomes 0 with the assumption

above. In other words, in such cases, the match of two

randomly chosen attributes will not contribute to the final

score. In contrast, if the match is correct (the two attributes

map correctly), it will positively contribute to the final

score. It can be seen that for a mapping m, the more cor-

rect matches m includes, the higher score m that is

rewarded. Thus, the optimal mapping  is expected to

be rewarded with the highest score among other map-

pings. Based on the analysis above, we can see that this

function is non-monotonic in km. For a search algorithm

using the scoring function, the  with the highest score

is close to the ideal solution with much higher possibility.

Consequently, the corresponding search algorithm can

apply to all three kinds of mappings. We compare the two

scoring functions over these mappings in our experi-

ments. Actually, the value 1/α represents the average of

the normal distance, or the approximate demarcation point

between the normal distance of the correct matches, and

the normal distance of the wrong matches. The control α can

be computed via the quantile, or the experiments. Further,

the behavior of the scoring function can be controlled, by

changing the parameter α (see [2] for more details).

B. Search Algorithm

Given the feature matrices and the scoring functions,

our task now is to find the optimal attribute mapping, namely

the mapping  with the highest score. In this section, we

first introduce how to refer to the problem of searching

the optimal mapping as a combinatorial optimization

problem, then present the details of the search algorithm.

Given two schemas S1 and S2 to be matched, the first

schema S1 has n1 attributes {a1, ..., ai, ..., an1}, while S2
has n2 attributes {b1, ..., bj, ..., bn2

}. Consider the first car-

dinality constraint one-to-one mapping, where n1 = n2. If

the attributes of S1 are regarded as a fixed sequence a1a2
...an1 and the correspondence is fixed m(ai) = bi, any

instance of the permutation of all attributes of S2 corre-

sponds to a possible mapping. For example, if n1 = n2 = 2,

then the permutation b1b2 and b2b1 correspond to two pos-

sible mappings {(a1, b1), (a2, b2)} and {(a1, b2), (a2, b1)},

where each mapping includes two matches. As a result,

we can see that our task of finding the  can be trans-

formed into a combinatorial optimization problem, where

the score of each permutation is the score of its corre-

sponding mapping. However, for the other two cardinal-

ity constraints of onto mapping and partial mapping, the

numbers of the attributes of the two schemas are typically

not equal. To perform the problem transformation above,

we need to make the two schemas own the same number

of attributes n. For this purpose, the ‘dummy’ attributes

[5] are added to S1 and S2. The problem of how many

attributes should be added depends on the scoring func-

tion. If the monotonic function is used, then n2 – 

attributes will be added to S1, while n1 –  attributes will

be added to S2, so each schema has n1 + n2 –  = n

attributes. Here, for onto mapping,  is also known, and

takes the value min(n1, n2); but for partial mapping, it is

the estimate of the number of the correct matches between

S1 and S2, and should be given to the algorithm. Now, we

describe how to decide the number of attributes that are

added. For S2, there exist n2 –  attributes {bq...br} that

have no matching attributes in S1, so n2 –  ‘dummy’

attributes are added to S1 as the matching attributes for

{bq...br}. The reason for S1 is the same as S2; thus we will

no longer give unnecessary details. For the non-mono-

tonic function, the  is not required, so it is considered

to be zero. Thus, n2 ‘dummy’ attribute will be added to

S1, while n1 ‘dummy’ attributes will be added to S2. We

can see that in addition to making the two schemas have

the same number of attributes, another purpose of the

‘dummy’ attributes is to make each attribute have a

counterpart in the other schema. In addition, the ‘dummy’

attribute enables the feature marices to have the same

number of rows with value 0. So, we only need to add

some columns into the feature matrices to make them

have the same size. Here, it should be noted that, when the

search algorithm computes the score of a mapping, the

matches that involve the ‘dummy’ attributes are ignored.

fn m( )  
km

i=1
1 α aij bm i( )j–

aij bm i( )j+
---------------------–⎝ ⎠

⎛ ⎞n

j=1∑∑=

m̂

m̂

m̂

Algorithm 1: Generator of New Solutions 

m̂

k̂m
k̂m

k̂m
k̂m

k̂m
k̂m

k̂m
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Next, we will discuss the search algorithm. We can see

that while regarding the attributes of S1 as a fixed

sequence, the number of the permutations of all attributes

of S2 is n!. The space of all the permutations is very large,

and an exhaustive search is not feasible. Thus, we exploit

the simulated annealing (SA) algorithm [6], which is the

classical solution to the combinatorial optimization prob-

lem, to find the optimal permutation corresponding to ,

denoted by . SA algorithm is a random search tech-

nique based on the physical annealing process, which can

gradually approach global optimization, by continuously

breaking off from local optimization. SA is a generic prob-

abilistic metaheuristic for the global optimization prob-

lem in a large search space. It is fit for a search space that

is discrete. For certain problems, SA may be more effi-

cient than an exhaustive search, if the globally optimal

solution is not necessary for users. The inspiration of SA

is from annealing in metallurgy, which is a technique

involving the heating and controlled cooling of a mate-

rial, to increase the size of its crystals, and to reduce their

defects. The energy function of SA represents the energy

of the solids that are heated. In our context, the scoring

functions are used as the energy function of SA. It should

be noted that we aim at the solution with the highest

score, rather than the usual lowest energy. The SA algo-

rithm involves six key components: the generator of new

solutions, the Metropolis criterion, the initial tempera-

ture, the length of Markov chain, the temperature-fall

period, and the stopping criteria. We now briefly explain

each of these components in our context.

The purpose of the first component is to explore the

solutions in the search space. The generator should uni-

formly explore the space, which benefits the discovery of

global optimization. There are many methods that can be

used as the solution generator, for example, the methods

from the genetic algorithm. The implementation of our

generator is shown in Algorithm 1. The main idea of the

algorithm is to use some ordering and exchanging rules

based on two random numbers, to generate the new solu-

tions. Given a current solution b1b2…bn, two numbers q

and r are randomly generated. If q < r, the elements from

bq to br are re-arranged in reverse order, while the order

of other elements remains unchanged. If q > r, the ele-

ments from b1 to br and from bq to bn are conversely re-

arranged, respectively. If q = r, the elements from b1 to bq
are conversely re-arranged. Here, other methods can also

be used, for example the cross and mutation leveraged

from the genetic algorithm.

The Metropolis criterion represents the acceptance cri-

terion of the new solutions. We use an example to explain

this criterion. Let p1 be the current solution, p2 be the new

solution, and f(x) be the scoring function, i.e., fe(x) or

fn(x). The Metropolis criterion means that if f(p2) > f(p1),

use p2 as the current solution instead of p1; else if

, also accept p2; else preserve p1 and

abandon p2, where rn is a random number in the range (0,

1), and T is the current temperature. When the score of

the new solution is greater than the current solution (f(p2)

> f(p1)), then we accept the new solution, and make a

small forward step towards global optimization. When

the score of the new solution is less than the current solu-

tion, the algorithm will accept the new solution with

some probabilities. This step can guarantee that the algo-

rithm can break from the local optimization with some

probabilities, and approach the global optimization grad-

ually. SA algorithm makes use of this criterion, to make a

decision about whether or not to accept the new solu-

tions.

The initial temperature T0 of SA is central to obtaining

the global optimization, and the higher T0 is, the closer

the solutions approach the real solution. However, a

much higher T0 will lead to a large number of loops,

which will result in a unacceptable running time, namely

a very slow convergence speed. Kirkpatrick and Vecchi

[6] proposed that T0 should enable the acceptance rate of

new solutions to approach the value 1 at the beginning.

This means that the acceptance possibility of Metropolis

criterion is close to 1 at the beginning, i.e., .

To obtain more accurate solution and relatively less run-

ning time, this possibility is typically set to 0.95 in prac-

tice. To use this method to compute T0 in our context, we

need to compute ∆f. Here, the statistical method is used to

compute the score difference. We randomly choose k

pairs of solutions (k > 1000), then compute the score dif-

ference of each pair, and finally, take the expectation of

these differences as the value of ∆f.

The last three components of SA are relatively simple.

The length of the Markov chain refers to the number of

m̂

p̂

exp f p
1

( ) f p
2

( )–

T
---------------------------–⎝ ⎠
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iterations traversing the new solutions under a certain

temperature. Intuitively, the longer the length is, the more

accurate the solution is. However, the length is topically

associated with the problem size, and overly long chains

would not help find global optimization [6]. Thus, the

length of Markov chain in our approach is set to 10n. For

the temperature-fall period, we make use of the classical

method, i.e., Tk+1 = βTk, to control the attenuation of the

temperature, where β = 0.95, and Tk is the current temper-

ature. In theory, we can obtain a more accurate solution

using a higher β. However, a higher β will lead to an

unacceptable running time. During the running of the algo-

rithm, if consecutive r Markov chains have no improve-

ment on the current optimization, the search process will

terminate; this is the stopping criterion. Now, based on

these components, the details of the search algorithm are

shown in Algorithm 2.

The algorithm begins with a random solution (line 1),

because the initial solution has very little effect on its per-

formance. Then, it randomly explores the new solutions

(line 5), and employs the Metropolis criterion, to decide

whether to update the current solution (lines 6–11). Actu-

ally, the internal loop corresponds to a Markov chain

(lines 4–13), where line 13 is the length of the Markov

chain.

Thus, each iteration of the external loop will generate a

Markov chain. If the length exceeds 10n, the spread of

the chain is over (line 13), and the temperature falls for

the next chain (line 14). If after r iterations of the external

loop the current solution remains unchanged, the algo-

rithm will terminate, and return the current solution as .

IV. EXPERIMENTAL EVALUATION

In this section, we test the time cost, and evaluate the

quality of the matching results of our proposed approach,

in synthetic schema matching scenarios. First, we present

how to generate the synthetic data set used in the experi-

ments. Then, we show the experimental results evaluat-

ing the performance of our matching algorithm, in the

case of the three cardinality constraints (one-to-one, onto,

and partial). We also study the effect of varying the con-

trol parameter of the non-monotonic function on the per-

formance of our approach. Finally, we test the time cost

of the proposed algorithm. Our algorithm is implemented

using C++ language, and the experiments are carried on a

PC compatible machine, with Intel Core Duo processor

(2.33 GHz).

We generate the experimental data set based on two

online bookstores developed by different persons. The

schema of the first bookstore includes 31 attributes, while

the second includes 35 attributes, and there exist 27 match-

ing attributes (matches) of each schema. We suppose that

a fictitious user continuously accesses each bookstore,

until the produced log includes 8000 queries. These SQL

statements include two kinds of queries: random queries

with any keywords, according to the query interface of

the bookstore; and fixed queries, generated based on the

navigation or classification functions of the bookstore.

The first kind of queries mainly makes use of schema

attributes as query criteria to find books. The attributes

used include ‘bookName’, ‘author’, ‘publisher’, and

‘pubtime’, where the rest of the attributes are not consid-

ered, because of their lower frequency of use. The first

kinds of queries are also divided into four parts, each of

which has a different attribute as a query criterion. We

assign different percentages to the queries with different

attributes, according to their use frequency. That is, we

generate 40% queries using the attribute ‘bookName’,

30% query using ‘author’, 20% queries using ‘publisher’,

and 10% queries using ‘pubtime’. We simulate the actual

case by this method. Based on the query logs, the two

feature matrices of the bookstores can be obtained as the

experimental data. In the experiments, the F-Measure

metrics are used as the measurement of the performance

of the algorithm.

We evaluate the accuracy against the correct mappings

determined by manual inspection of the source and target

schemas. We run our algorithm with randomly chosen

subsets of the experimental data in each experiment for

many times, then get the average of the experimental

p̂

Fig. 3. Results of one-to-one mapping. (a) n-matrix, (b) p-matrix.
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results. We first present the results of one-to-one mapping

in Fig. 3. We use the notation ‘mon’ and ‘non’ as short-

hand for the monotonic function and the non-monotonic

function, respectively. The control parameter α for the

non-monotonic function is set to 0.3.

As can be seen in Fig. 3(a), the match results gradually

deteriorate, as the number of the matching attributes

(matches) increases, and the worst result for the ‘non’

function is nearly 60%. The changing trends of the two

curves are almost the same, namely decreasing with the

increase of the number of matches. It is obvious that the

accuracy will decrease with the increase of matches,

because the increase of the number of matching attributes

will result in the increase of the space of the candidate

matches. The results with ‘mon’ are better than the one

with ‘non’. This is because the correct km is known for the

one-to-one mapping. We can also see that the overall

quality of the results over the n-matrix is higher, than the

one over the p-matrix. The reason is that the information

collected in the n-matrix is more than the information in

the p-matrix, and this behavior conforms to our theoreti-

cal analysis in the section above.

The experimental results corresponding to the onto

cardinality constraint are shown in Fig. 4. Here, the size

of the target schema is kept constant at 16 attributes,

while the matching attribute number of the source schema

is increased from 4 to 14. As can be seen in both data

sets, the results with ‘non’ outperform the results with

‘mon’. The accuracy with ‘non’ reaches 80% in Fig. 4(a),

while it was 59% in Fig. 4(b). It can be seen that the

‘non’ scoring function shows its advantage, compared to

the ‘mon’ scoring function, when the real km is unknown.

The overall quality over the n-matrix is better than over

the p-matrix. The changing trends of curves here are

different from the one in Fig. 3. The accuracy in the

onto mapping case gradually improves, as the number of

matching attributes increases; then the accuracy begins to

decline, when the number exceeds some value; this is just

contrary to the one-to-one mapping. The reason is that the

matching with the onto constraint requires extra effort, in

contrast to the one-to-one case, i.e., the onto mapping

first needs to choose a subset of the 16 attributes as the

matching attributes that will participate in the following

matching process, then the onto mapping based on the

chosen attribute subset is turned into the one-to-one map-

ping. At the beginning, the space of the attribute subsets

is very large, because of the lesser attributes of the source

schema. Thus, the accuracy is low, and the lowest is

around 30%. With the increase of the attributes of the

source schema, the accuracy gradually rises.

Fig. 4. Results of onto mapping. (a) n-matrix, (b) p-matrix.

Fig. 5. Results of partial mapping. (a) n-matrix, (b) p-matrix.
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Fig. 5 illustrates the results of the matching with the

partial mapping cardinality constraint. In this experiment,

we fix the size of both source and target schema at 14,

and vary the number of the matching attributes from 4 to

12. To enable the experiment with the ‘mon’ in the partial

mapping case, we give the number of the correct matches

to the algorithm with the ‘mon’ function. When the num-

ber of matching attributes is less than 5, the accuracy is

very low, under 15%. Thus, the results when the attribute

number is under 4 are not shown in Fig. 4. Here, the trend

of curves in Fig. 5 is similar to the above experiment, but

the best performance is less than 70%. The reason is that

the matching process with partial cardinality is similar to

the one with onto cardinality, namely the algorithm needs

to choose a subset of the attributes from the attribute uni-

verse. Thus, the accuracy is very low, when the matching

attributes involved in the matching process are less. That

is, the search space is very large, when the matching

attribute number is few. It can be seen that the matching

with the partial cardinality constraint is the most difficult

matching. Conversely, the results with the ‘non’ function

are better, than the one with the ‘mon’ function.

Now, we test the effect of varying the control parame-

ter α on the match results. We fix the size of both source

and target schema at 14 attributes, and fix the number of

the correct matches at 9 and 12, respectively, denoted by

n = 12 and n = 9. The experimental results are shown in

Fig. 6. We can see that the accuracy first increases, as α

increases from 0.1 to 0.3; then achieves the highest value

as α  (0.3, 0.5); and finally drops, with the increase of α.

When α is under 0.3, most of the true matches are pun-

ished with negative score. Conversely, lots of false matches

are rewarded with positive score. Thus, at the beginning,

the accuracy is low. With α approaching the value ‘0.3’,

the accuracy gradually reaches the greatest value, of

around 70%. Then, the accuracy gradually declines, because

of the punishment of most of the matches. The accuracy

with n = 9 is higher than the one with n = 12, and the

results over the n-matrix are better than those over the p-

matrix, which is consistent with the above experiments.

Finally, we test the time cost of our algorithm with

one-to-one cardinality constraint, and α is also set to 0.3.

In this experiment, we set the number of the correct

matches to 9 and 14, respectively, denoted by n = 9 and n

= 14, and set the temperature-fall coefficient β = 0.9 and

β = 0.95. The y-coordinate represents time cost, while the

x-coordinate represents the length of Markov chain. The

results are shown in Fig. 7. The time with n =14 increases,

as the length of the Markov chain increases; and the long-

est running time reaches nearly two minutes. Obviously,

∈

Fig. 6. Varying the control parameter α. (a) n-matrix, (b) p-matrix.

Fig. 7. Time cost. (a) β = 0.9, (b) β = 0.95.
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the time cost increases, because of the iterations caused

by the increase of the length of Markov chain. However,

the time cost with n = 9 remains unchanged, after a length

beyond 60. The reason for this behavior is that the size of

the search space for n = 9 is less than the number of all

iterations of the algorithm, so the algorithm will accom-

plish the search process ahead of time, and ignore the fol-

lowing iterations caused by the increase of length. It can

also be seen that the time cost for β = 0.9 in Fig. 7(a) is

less than the cost for β = 0.95 in Fig. 7(b). The reason is

that the number of iterations increases for β = 0.95.

V. RELATED WORK

Schema matching has been an active research field for

a long time [1-3, 5, 7, 8]. A survey of approaches to auto-

matic schema matching is presented in [1]. They present

a taxonomy that covers many of these existing approaches,

and describe the approaches in some detail. These exist-

ing techniques are called matchers by their work, and are

mainly classified as schema-based and instance-based.

Schema-based matchers only consider schema informa-

tion that includes the usual properties of schema ele-

ments, such as name, description, data type, relationship

types, constraints, and schema structure. Instance-based

matchers can give important insight into the data stored

in the schemas, especially in the case that useful schema

information is limited.

Schema matching is a preliminary step for schema

mapping. The Clio system [8, 9] generates SQL-like map-

pings based on attribute correspondences. A semantic

approach to discovering schema mapping expressions is

proposed in [10]. They investigate the use of an alternate

source of information about schemas, namely the pre-

sumed presence of semantics for each table, expressed in

terms of a conceptual model (CM) associated with it [10].

Then, they propose an algorithm for discovering sub-

graphs that are plausible connections between those con-

cepts/nodes in the CM graph that have attributes

participating in element correspondences. In [11], they

introduce several algorithms contributing to bridging the

gap between the practice of mapping generation, and the

theory of data exchange.

Kang and Naughton [2] propose an approach that fits

into the situation in which the column names in the sche-

mas and the data in the columns are ‘opaque’ or very dif-

ficult to interpret. Their technique works in two steps.

First, they measure the pair-wise attribute correlations in

the tables to be matched via using mutual information.

Then, they find matching node pairs between the depen-

dency graphs by a heuristic algorithm. A recent work [7]

puts the context into schema matching, in order to

improve the quality of data exchange. The context actu-

ally refers to the categorical attribute whose values are

discrete. These attributes can classify the source instances

into different categories. They make use of the categori-

cal attributes as the constraint to restrict the matches to

work only for partial data instances in the same relation.

A versatile graph matching algorithm named ‘similarity

flooding’ is proposed in [12]. The key idea of their

method is the assumption that whenever any two nodes in

the graphs are found to be similar, the similarities of their

adjacent nodes increase. Thus, the similarity between two

nodes is computed as the sum of their own similarities,

plus their neighbors. After some iterations, the initial

similarity of any two nodes propagates through the graph,

i.e., similarity flooding. Corpus-based Schema Matching

is proposed in [3]. They show how a corpus of schemas

and mappings can be used as a new resource for identify-

ing the attributes in schema matching. They exploit such

a corpus in two ways. The first is to learn the variation

and the similar properties of the element to be matched

from the corpus, while the second is to learn the statistics

about elements and their relationships, and use them to

infer constraints.

A new class of techniques, called usage-based schema

matching, is proposed in the recent work [5]. Their key

idea is to exploit the feature extracted from the query log,

to find the correspondence of the attributes. They identify

co-occurrence patterns that represent two attributes

appearing in the two query clauses together. Finally, they

employ the genetic algorithm to find the highest score

mappings. Recently, different from the traditional tech-

niques, possible mapping is introduced to schema match-

ing [4, 13], which presents another research method for

schema matching. For an attribute, the possible mapping

represents that there are multiple matching candidates

with respect to this attribute. They use the possible map-

pings to create the possible mediated schemas to retrieve

multiple possible query results for one query.

Schema matching is a basic problem in data exchange.

Data exchange is a problem of taking data structured

under a source schema, and creating an instance of a tar-

get schema that reflects the source data as accurately as

possible. Fagin et al. [14] discuss foundational and algo-

rithmic issues related to the semantics of data exchange,

and to the query answering problem in the context of data

exchange. A multi-column substring matching is pre-

sented in [15], to detect complex schema translations

from multiple database columns. They propose a generic

measure for comparing two columns matched by a

schema matching, based on the notion of an information-

theoretic discrepancy. They also propose an algorithm for

‘splitting’ the string values in a column, to identify sub-

strings.

VI. CONCLUSION

There is a variety of information about the semantics

of attributes in query logs, such as frequency, relationship
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between clauses, etc. This valuable information can be

exploited to find the semantic correspondences between

attributes. In this paper, we employ the order of attributes

appearing in the schema structure of query results, to per-

form schema matching. The appearance order embodies

the extent of the importance of an attribute for the user

examining the query results. The attributes close to the

left side are important for users capturing the informa-

tion. That is, the position of attributes in the structure of

query results implies some semantics, which can be used

to find matches.

There are three phases in the proposed approach. We

first perform some preprocessing over the query logs of

the schemas to be matched, and collect the statistics

about the appearance order of attributes from the query

logs processed. Then, two types of matrices are designed

to structure the statistics around the appearance order of

attributes. The first type is called the p-matrix, while the

second type is called the n-matrix. The second matrix

captures more information than the first one, by record-

ing the information about the number of attributes after a

given attribute. Third, two scoring functions are consid-

ered to measure the similarity of the collected statistics.

One function is monotonic with the number of the correct

matches, and fits the one-to-one and onto mappings;

while the other is non-monotonic and is designed for par-

tial mappings. Finally, the SA algorithm is employed to

find the mapping with the highest score. We perform

extensive experiments to test the proposed approach, and

the experimental results show that our approach performs

well.
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