DOI QR코드

DOI QR Code

Second order Temporal Finite Element Methods in Linear Elasticity through the Mixed Convolved Action Principle

혼합 합성 변분이론에 근거한 선형탄성시스템의 이차 시간 유한요소해석법

  • Kim, Jinkyu (School of Civil, Environmental and Architectural Engineering, Korea Univ.)
  • 김진규 (고려대학교 건축사회환경공학부)
  • Received : 2014.03.24
  • Accepted : 2014.05.16
  • Published : 2014.06.30

Abstract

The mixed convolved action principle provides a new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics in terms of mixed formulation, convolution, and fractional calculus. In this paper, its potential in the development of numerical methods for transient problems in various dynamical systems when adopting temporally second order approximation is investigated. For this, the classical single-degree-of-freedom linear elastic dynamical systems are primarily considered to investigate computational characteristics of the developed algorithms. For the undamped system, all the developed algorithms are symplectic with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics.

동역학의 새로운 변분이론인 혼합 합성 변분이론은 수학물리학을 비롯한 공학에 있어 초기치-경계치 문제해석에 광범위하게 적용될 수 있는 기반을 제공하는 것으로, 본 논문은 이 이론을 토대로 시간에 대한 이차의 형상함수가 적용된 시간 유한요소해석법을 개발하고 그 해석법의 수치특성 확인을 통해 향후 다양한 동적시스템 해석의 적용에 대한 가능성을 살펴보았다. 이를 위해 가장 기본적인 선형탄성의 단자유도계가 고려되었다. 에너지 보존시스템의 경우(비감쇠 시스템에 외력이 작용치 않는 경우), 제안된 알고리즘 모두는 time-step에 관계없이 안정적이며 수치감쇠가 없이 에너지와 모멘텀이 보존되는 symplecticity property를 가지고 있음을 확인할 수 있었고, 감쇠시스템인 경우, time-step이 점점 작아질수록 정확한 해에 빠르게 수렴하는 것을 확인하였다.

Keywords

References

  1. Agrawal, O.P. (2001) A New Lagrangian and a New Lagrange Equation of Motion for Fractionally Damped Systems, Journal of Applied Mechanics, 68, pp.339-341. https://doi.org/10.1115/1.1352017
  2. Agrawal, O.P. (2002) Formulation of Euler-Lagrange Equations for Fractional Variational Problems, Journal of Mathematical Analysis and Applications, 272, pp.368-379. https://doi.org/10.1016/S0022-247X(02)00180-4
  3. Agrawal, O.P. (2008) A General Finite Element Formulation for Fractional Variational Problems, Journal of Mathematical Analysis and Applications, 337, pp.1-12. https://doi.org/10.1016/j.jmaa.2007.03.105
  4. Atanackovic, T.M. Konjik, S., Pilipovic, S. (2008) Variational Problems with Fractional Derivatives: Euler-Lagrange Equations, Journal of Physics A-Mathematical and Theoretical, 41, p.095201. https://doi.org/10.1088/1751-8113/41/9/095201
  5. Baleanu, D., Muslih, S.I. (2005) Lagrangian Formulation of Classical Fields Within Riemann-Liouville Fractional Derivatives, Physica Scripta, 72, pp.119-121. https://doi.org/10.1238/Physica.Regular.072a00119
  6. Bretherton, F.P. (1970) A Note on Hamiltons Principle for Perfect Fluids, Journal of Fluid Mechanics, 44, pp.19-31. https://doi.org/10.1017/S0022112070001660
  7. Cresson, J. (2007) Fractional Embedding of Differential Operators and Lagrangian Systems, Journal of Mathematical Physics, 48, pp.033504 https://doi.org/10.1063/1.2483292
  8. Gossick, B.R. (1967) Hamilton's Principle and Physical Systems, Academic Press, New York.
  9. Gurtin, M.E. (1964a) Variational Principles for Linear Elastodynamics, Archive for Rational Mechanics and Analysis, 16, pp.34-50.
  10. Gurtin, M.E. (1964b) Variational Principles for Linear Initial-Value Problems, Quarterly of Applied Mathematics, 22, pp.252-256.
  11. Hamilton, W.R. (1834) On a General Method in Dynamics, Philosophical Transactions of the Royal Society of London, 124, pp.247-308. https://doi.org/10.1098/rstl.1834.0017
  12. Hamilton, W.R. (1835) Second Essay on a General Method in Dynamics, Philosophical Transactions of the Royal Society of London, 125, pp.95-144. https://doi.org/10.1098/rstl.1835.0009
  13. Dargush, G.F., Kim, J. (2012) Mixed Convolved Action, Physical Review E, 85(6), pp.06606.
  14. Landau, L.E., Lifshits, E.M. (1975) The Classical Theory of Fields, Pergamon Press, Oxford.
  15. Mckeena, F., McGann, C., Arduino, P., Harmon, J.A. (2013) OpenSees Laboratory.
  16. Rayleigh, J.W.S. (1877) The Theory of Sound, Dover, New York.
  17. Riewe, F. (1996) Nonconservative Lagrangian and Hamiltonian Mechanics, Physical Review E, 53, pp.1890-1899. https://doi.org/10.1103/PhysRevE.53.1890
  18. Riewe, F. (1997) Mechanics with Fractional Derivatives, Physical Review E, 55, pp.3581-3592. https://doi.org/10.1103/PhysRevE.55.3581
  19. Slawinski, M.A. (2003) Seismic Waves and Rays in Elastic Media, Pergamon, Amsterdam.
  20. Tiersten, H.F. (1967) Hamiltons Principle for Linear Piezoelectric Media, Proceedings of the IEEE, 55, pp.1523-1524.
  21. Tonti, E. (1973) On the Variational Formulation for Linear Initial Value Problems, Annali di Matematica Pura Applicata, 95, pp.331-359. https://doi.org/10.1007/BF02410725