DOI QR코드

DOI QR Code

Proposed Methodological Framework of Assessing LID (Low Impact Development) Impact on Soil-Groundwater Environmental Quality

저영향개발(Low Impact Development) 기법 적용 지역 토양·지하수 환경 영향 평가 방법론 제안 연구

  • Kim, Jongmo (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Kim, Seonghoon (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Lee, Yunkyu (R&D Team, Research Institute of Technology, TAEYOUNG E&C) ;
  • Choi, Hanna (R&D Team, Research Institute of Technology, TAEYOUNG E&C) ;
  • Park, Joonhong (Department of Civil and Environmental Engineering, Yonsei University)
  • Received : 2014.04.24
  • Accepted : 2014.06.11
  • Published : 2014.07.01

Abstract

The goal of this work is to develop a framework of methods to entirely evaluate effects of LID (Low Impact Development) on soil-groundwater environmental quality as well as land-scape and ecological factors. For this study, we conducted an extensive literature review. As outcomes, soil-groundwater environmental quality is newly conceptualized as a comprehensive index reflecting (i) groundwater pollution sensitivity (hydrogeological factor), (ii) biochemical contamination, and (iii) biodegradability. The methods of classifying and indexing is shown by combining selection of the items to be measured for soil-groundwater environmental quality and integrating the resulted items comprehensively. In addition, from soil-groundwater environmental quality, land-scape and ecological factors in existing environmental impact assessment a method was developed an overall index which can evaluate effects to environment by using GIS (Geographic Information System) and AHP (Analytic Hierachy Process). For optimizing LID planning, designing and post-evaluation, LCIA (Life Cycle Impact Assessment) was regarded as an appropriate method.

본 연구에서는 도시개발 시 저영향개발(Low Impact Development, LID) 기법을 적용하였을 때, 토양 지하수 환경과 생태경관에 미치는 영향을 총체적으로 평가하는 방법의 framework 구축을 목적으로 문헌조사 연구를 수행하였다. 그 결과 토양 지하수 환경생태 건강성은 (i) 수리지질학적 지하수 오염 취약성, (ii) 생화학적 오염도와 (iii) 토양의 오염 정화능력의 여러 요소들에 의해서 측정되어 종합 및 평가되는 것이라는 개념을 설정하였고, 이들 각각의 요소에 미치는 영향 평가를 위한 측정 항목 선정과 각 요소의 측정치를 종합화해서 등급화 및 지표화하는 방법을 제시하였다. 또한 토양 지하수 환경 건강성과 기존의 환경 영향 평가에서 고려하는 생태 및 경관 요소를 GIS(Geographic Information System)와 AHP(Analytic Hierachy Process) 기반을 활용 및 접목하여 토양 지하수뿐만 아니라 생태 경관 등 LID의 자연환경에 미치는 영향을 총체적으로 평가하는 측정 항목 및 지표 산정과 그에 따른 활용 방법을 제시하였다. LID 기술의 계획 및 설계 단계에서 활용할 수 있는 최적화를 위해서 LCIA(Life Cycle Impact Assessment) 방법상의 framework로 활용하는 것을 본 연구에서는 제안하였다.

Keywords

References

  1. 국립환경연구원 (2000), 정책 결정자를 위한 수질관련 기준 비교분석, pp. 1-184.
  2. 이민효, 박종겸, 윤정기, 노회정, 김문수, 김혁 (2002), 오염토양.지하수의 자연저감관측기법 적용 외국 사례집, 11-1480083-00146-01, 국립환경연구원, pp. 1-224.
  3. 환경부 (2007), 지하수 수질기준 개선을 위한 선행방안 연구, pp. 1-138.
  4. 환경부 (2009), 토양오염 위해성평가지침, pp. 1-49.
  5. 환경부 (2011), 토양오염우려기준, pp. 1-2.
  6. 환경부 (2013a), 지하수법령법, pp. 1-320.
  7. 환경부 (2013b), 환경영향평가시 저영향개발(LID)기법 적용 매뉴얼, pp. 1-27.
  8. Ahiablame, L. M., Engel, B. A. and Chaubey I. (2012), Effectiveness of low impact development practices: literature review and suggestions for future research, Water, Air, & Soil Pollution, Vol. 223. No. 7, pp. 4253-4273. https://doi.org/10.1007/s11270-012-1189-2
  9. Canals, L. M., Bauer, C., Depestele, J., Dubreuil, A., Knuchel, R. F., Gaillard, G., Michelsen, O., Muller-Wenk, R. and Rydgren, B. (2007), Key elements in a framework for land use impact assessment within LCA, The International Journal of Life Cycle Assessment, Vol. 12, No. 1, pp. 5-15. https://doi.org/10.1065/lca2006.05.250
  10. Illinois Environmental Protection Agency (2002), Part 620, Subpart D: Groundwater quality standards.
  11. Jeon, H. T., Hamm, S. Y., Cheong, J. Y., Ryu, S. M. and Jang, S. (2009), Risk assessment of groundwater and soil in Sasang industrial area in Busan metropolitan city, The Journal of Engineering Geology, Vol. 19, No. 3, pp. 295-306 (in Korean).
  12. Johnson, D. R., Lee, T. K., Park, D. H., Fenner, K. and Helbling, D. E. (2014), The functional and taxonomic richness of wastewater treatment plant microbial communities are associated with each other and with ambient nitrogen and carbon availability, Environmental Microbiology, doi:10.1111/1462-2920.12429.
  13. Ki, D. W. (2008), Development of methods for classifying and mapping soil ecological quality using a decision tree algorithm, Master's thesis, pp. 30-35 (in Korean).
  14. Ki, D. W., Park, J. H., Heo, J. and Oh, K. J. (2007), Estimating soil ecological quality and its potential applications for sustainable construction, Korean Society of Civil Engineers Conference, pp. 1485-1488 (in Korean).
  15. Lebron, C. A., Petrovskis, E., Löffler, F. and Henn, K. (2011), Final report: application of nucleic acidbased tools formonitoringmonitored natural attenuation (MNA), biostimulation and bioaugmentation at chlorinated solvent sites. ESTCP project ER-200518, pp. 1-21.
  16. Lee, M. H., Lee, K. C., Yun, J. K., Noh, H. J., Kim, M. S., Kim, H., Lee, S. Y. and Jan, J. S. (2001), A study of degradation in petroleum hydrocarbon polluted site by enhancing natural attenuation (III), NIER No. 2001-30-622, pp. 1-80 (in Korean).
  17. Lu, X., Wilson, J. T. and Kampbell, D. H. (2009), Comparison of an assay for Dehalococcoides DNA and a microcosm study in prediction reductive dechlorination of chlorinated ethenes in the field, Environmental Pollution, Vol. 157, No. 3, pp. 809-815. https://doi.org/10.1016/j.envpol.2008.11.015
  18. New Jersey Department of Environmental Protection (2012), Monitored natural attenuation technical guidance, Site Remediation Program, pp. 1-46.
  19. Nielson, M. N. and Winding, A. (2002), Microorganism as indicators of soil health, NERI Technical Report No. 338, Ministry of the Environment, National Environmental Research Institute, Denmark, pp. 21-45.
  20. Park, J. H., Ki, D. W., Lee, J. J., Park, T. K. and Kim, H. R. (2008), Method for estimation soil ecological quality from existing soil environmental data, Korea, 10-0866909.
  21. Rittmann, B. E. and MaCarty, P. L. (2001), Environmental biotechnology: principles and applications, McGraw-Hill, Singapore, pp. 42-43.
  22. Scheidleder, A., Grath, J., Winkler, G., Stark, U., Koreimann, C., Gmeiner, C., Nixon, S., Casillas, J., Leonard, J. and Elvira, M. (1999), Groundwater quality and quantity in Europe, European Environment Agency, Copenhagen, pp. 47-52.
  23. Secunda, S., Collin, M. L. and Melloul, A. J. (1998), Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel's Sharon region, Journal of Environmental Management, Vol. 54, No. 1, pp. 39-57. https://doi.org/10.1006/jema.1998.0221
  24. Stroo, H. F., Leeson, A. and Ward, C. H. (2012), Bioaugmentation for groundwater remediation, Springer, New York, pp. 171-197.
  25. Suh, J. H. and Lee, I. K. (2013), The water circulation improvement of apartment complex by applying LID technologies - focused on the application of infiltration facilities-, Journal of the Korean Institute of Landscape Architecture, Vol. 41, No. 5, pp. 68-77 (in Korean). https://doi.org/10.9715/KILA.2013.41.5.068
  26. Vaidya, O. and Kumar, S. (2006), Analytic hierarchy process: an overview of applications, European Journal of Operational Research, Vol. 169, No. 1, pp. 1-29. https://doi.org/10.1016/j.ejor.2004.04.028
  27. Van der Zaan, B., Hannes, F., Hoekstra, N., Rijnaarts, H., De Vos, W. M., Smidt, H. and Gerritse, J. (2010), Correlation of Dehalococcoides 16S rRNA and chloroethene reductive dehalogenase genes to different geochemcial conditions in chloroethenecontaminated groundwater, Applied and Environmental Microbiology, Vol. 76, No. 3, pp. 843-850. https://doi.org/10.1128/AEM.01482-09
  28. Winding, A., Jund-Rinke, K. and Rutgers, M. (2005), The use of microorganism in ecological soil classification and assessment concepts, Environmental Technology, Vol. 62, No. 2, pp. 230-248.
  29. Wisconsin Department of Natural Resources (2014), Guidance on natural attenuation for petroleum releases, pp 1-19.
  30. Zhang, Y., Baral, A. and Bakshi, B. R. (2010), Accounting for ecosystem services in life cycle assessment, part IIi: toward an ecologically based LCA, Environmental Science & Technology, Vol. 44, No. 7, pp. 2624-2631. https://doi.org/10.1021/es900548a